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Abstract

Supervisory Control and Data Acquisition (SCADA) systems are widely used in au-

tomated manufacturing and in all areas of our nation’s infrastructure. Applications

range from chemical processes and water treatment facilities to oil and gas produc-

tion and electric power generation and distribution. Current research on SCADA

system security focuses on the primary SCADA components and targets network

centric attacks. Security risks via attacks against the peripheral devices such as the

Programmable Logic Controllers (PLCs) have not been sufficiently addressed.

Our research results address the need to develop PLC applications that are correct,

safe and secure. This research provides an analysis of software safety and security

threats. We develop countermeasures that are compatible with the existing PLC tech-

nologies. We study both intentional and unintentional software errors and propose

methods to prevent them. The main contributions of this dissertation are:

• Develop a taxonomy of software errors and attacks in ladder logic

• Model ladder logic vulnerabilities

• Develop security design patterns to avoid software vulnerabilities and incorrect

practices

• Implement a proof of concept static analysis tool which detects the vulnerabil-

ities in the PLC code and recommend corresponding design patterns.
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Chapter 1

Introduction

Lack of peripheral device protection in a SCADA system is a problem in that it is

the basis by which most ‘control based‘ attacks on the nations’ infrastructure could

be carried out. Most current work on industrial control system protection is directed

toward the graphical monitoring software, as opposed to the devices from which its

data is controlled. Network attacks on these peripheral devices, by design, are not

required to go through the personal computer (PC) hosting the SCADA software

directly. As most programmable logic controllers (PLC’s) are now equipped with

Ethernet communications cards, an attacker could access the PLC hardware and its

programming tools, directly. The traditional SCADA problem in which an attacker

enters the system through the PC housing the SCADA software only adds to the issue

of protection, but never fully addresses protection of the system at the operational

level. This issue is further compounded when you take into consideration internal

attackers as well as external attackers and cross reference those two subgroups against

malicious attacks verses unintentional coding errors. In this dissertation, we address

multiple fundamental errors in the PLC programming platform and present methods

by which to defend against, or correct, these errors. These errors are broken down

by attackers knowledge, type of attack, severity of the attack performed or intended,

internal or external attackers (to determine practical knowledge of the system) and

the degree to which a given attack could be achieved intentionally or unintentionally.

Rules will be presented to address these scenarios in an open format which would

allow for their implementation regardless of controller type.

1
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The research that we are proposing addresses the issue of industrial control system

infrastructure at the programmable device level. This can only be properly addressed

if the problem is looked at from multiple perspectives and severity levels, both of

which are missing from current research in the field. We plan to develop multiple

attack models and scenarios, giving real world coding examples and providing a means

to address each. This would allow the current device manufacturers, as well as OEM’s,

to address these issues prior to being placed in ‘live scenarios‘, thereby leaving their

systems open for control level attacks. To accomplish my dissertation research, the

following tasks are anticipated to be required:

1. Create a table of errors (vulnerabilities) outlining the knowledge of the attacker,

or unintentional error, against the probability of the attack occurring. We pro-

vide coding examples of ‘entry methods‘ of the vulnerabilities into the system.

We will develop a PLC software security taxonomy to model and conceptual-

ize the vulnerabilities we identify. This taxonomy forms the basis to represent

mitigation methods of the detected vulnerabilities.

2. Create severity measurements and a severity chart which will outline the severity

of the possible attacks and/or unintentional errors in the PLC system and in

SCADA. We will present evaluations and examples of these attacks in a manner

similar to the attack descriptions of the Open Web Application Security Project.

3. The results of tasks 1 and 2, along with application specific logic (state-transition

diagrams) are used to develop formal models of these vulnerabilities. These

models are used to identify these vulnerabilities in PLC code and to develop

mitigation strategies.

4. Prevention, detection, and removal of software vulnerabilities:

• Prevention: software design methodologies leading to best practices guide-

lines, represented as design patterns

2
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• Detecting vulnerabilities: static analysis tools “screening“ the PLC code

for vulnerabilities modeled in step 3. We propose a rule-based code analysis

tool that 1) detects known vulnerability and 2) identifies the source of the

vulnerability. Our aim is to develop a tool with low false positive and false

negative occurances.

• Removal of vulnerability: We will link the detected vulnerabilities with

the appropriate PLC security design patterns. This will allow the system

developer to modify the code in a manner that removes the vulnerabilities.

At this point, we are not proposing an automated system to remove the

vulnerability because the main focus of this research is to aid the detection

of the software vulnerability and to provide guidelines to the developer.

5. Proof-of-concept implementation.

• State-transition-diagram/rule-based detection

• Input: PLC code that has passed the PLC compilation successfully

• Output: List of vulnerabilities and associated design patterns

3
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Chapter 2

Related Work

Currently, most facilities that use factory automation are turning to SCADA systems

to track and control those factory automation devices. This includes not only manu-

facturing facilities but also those major infrastructure facilities such as power, water

and natural gas [23]. By using a SCADA system to track and control these systems,

it leaves them extremely vulnerable to both those individuals with malicious intent

as well as those that made unintentional mistakes.

It appears that the research on the problem domain as a whole (SCADA technol-

ogy as it relates, in general, to the public and private sectors) is slowly beginning to

make its way to the forefront [44]. During the last decade, we have seen an increased

national awareness of critical infrastructure incidents. Assessing and mitigating the

cyber security vulnerabilities of SCADA systems are in the focus of academia, gov-

ernment, and industry research. Nicholson et al. [34] give a survey of the security

concerns in SCADA systems. The authors present the change of focus in SCADA

security, provide and overview of the know attacks and the type of malicious users,

current and future threats, and discuss current best practices. This is a result of

the potential impact that SCADA technology could have on the national infrastruc-

ture arena. The related research that we have found spans multiple areas of interest

pertaining to the specific job function of the researcher. These related works, to

date, range from utility company consortiums and working groups to government

level directives and studies. For example, there currently are working groups that

have been created for the various infrastructure sectors of water, electricity and nat-

4
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ural gas [4, 11, 29]. Furthermore, the national agencies such as the US Departments

of Energy and Homeland Security each have published white papers and begun ini-

tiatives to begin investigations into the problem domain of SCADA systems in gen-

eral [2,36]. The White House has released "Presidential Directive 63" as well as "The

National Strategy to Secure Cyberspace" both of which discuss SCADA systems as a

direct threat to national security [24]. The vendor specific publications suggest that

increased security may adversely affect their products performance and, therefore,

strongly encourage the end user to disable or bypass certain security features [5, 6].

Academia research to strengthen SCADA security falls in two general categories:

1) overview of SCADA security risks and the need for new security technologies to

strengthen security [9, 16, 19, 26, 32, 34, 43, 45] and 2) developing new methods to

support security analysis and technologies [12, 15, 21, 30, 31, 33, 38, 39]. For example,

Cardenas et al. give an overview of the cyber security risk in industrial control

systems and emphasize the importance of distinguishing these systems from general

purpose IT systems [9]. The authors present detailed overview of government and

industry regulation, such as North American Electric Reliability Corporation (NERC)

cybersecurity standards for control systems [35] and the NIST Guide to Industrial

Control System (ICS) Security [46] to improve SCADA security. Cardenas et al.

argue that the knowledge of the physical system enables malicious attackers to change

system behavior, therefore indicating control device vulnerabilities. Several unique

SCADA security requirements, e.g., real-time requirements, need for continuity of

operations, and large number of legacy systems, over traditional information security

are discussed in the paper. Miller and Rowe present a comprehensive overview of

SCADA and critical infrastructure incidents in [32]. They propose a standardized

taxonomy of SCADA incidents to support comparison of known incidents.

Until recently, SCADA security focused on network-based security threats, as-

suming that preventing unauthorized external access to the SCADA system provides

5
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sufficient security. However, this approach will not prevent attacks exploiting other

SCADA components, for example malicious control code for PLC components. In

their 2007 publication, pre-Stuxnet, Valentine and Farkas [50] argued that the Pro-

grammable Logic Controllers (PLCs) are vulnerable to intentional software-based

attacks by malicious users. The authors discuss the inability of PLC code compilers

to detect such software errors. In their followup publications [51, 52], the authors

provide a taxonomy of coding errors, recommend detection and mitigation methods.

The widely publicized Stuxnet [53] attack has shifted national attention to address

software vulnerabilities of control devices [12,30,31,38,45]. Schaefer [45] discusses the

disconnection between modern PLCs and the physical world these devices control.

In particular, the author points out several important aspects of ladder logic execu-

tion that may create unsafe conditions, such as race condition. Olmstead et al. [38]

and Minn at al. [31] survey PLC security concerns and provide guidelines to miti-

gate threats. The authors study software-based vulnerabilities among the important

threats against SCADA. Several publications address the need for monitoring software

process controllers [12, 33]. While these approaches are useful to detect anomalous

activities of malware, they do not prevent the initial execution and propagation of

such malware. The closest to our work is the attack presented by McLaughlin and

McDaniel [30]. The authors developed an automated tools, called SABOT, that is

capable of generating PLC code that, when executes, creates system behavior ac-

cording to the attackerâĂŹs specification. For this, the tool must have access to the

control logic bytecode from the targeted PLC. The authors demonstrate that contrary

to general belief that attacks against SCADA systems may be launched by attack-

ers without any specific knowledge about the system. In our work, we address the

threat of malicious PLC code uploads by requiring that all PLC code uploads must

be evaluated by our static analysis tool. Therefore, the malicious code, generated by

SABOT, would be detected and prevented from execution.

6



www.manaraa.com

The current research appears to focus more on the data monitored by the SCADA

system itself and the malicious means available to shut down or slow down the SCADA

system when used as a controller interface [8, 17, 18, 23, 40, 41, 46]. Ongoing research

needs to consider the topic of SCADA systems from the viewpoint of the negative

impact that breaching the SCADA system terminal could have on the PLC ladder

logic itself. By addressing this problem you would then begin to develop a basis for

the overall protection of automated control systems. This would begin to allow for

a layered approach in protection. The SCADA PC would be protected, for example

possibly by IPSec, while implementing a second layer directly into the PLC compiler

would begin to track changes in the PLC code and look for known vulnerable state-

ments that could cause severe issues in intended functionality. We believe that the

available research using this approach is somewhat limited at this point due to a lack

of understanding of possible fault scenarios in the ladder logic itself. We believe that

by expanding the research to include investigation of protection of the PLC ladder

logic through fundamental changes in the way that the logic is compiled and tracked

will begin to address a more solid foundation for automation security as a whole.

Currently, there is no existing ’complete’ solution to this problem. This explains

why many private sector working groups are being formed to better understand the

problem of developing safe and secure systems. For example, the beginnings of a

document currently in the formation process by the The American Gas Associa-

tion [4] published an overview and recommendations on secure SCADA communica-

tions, policies and plans. This work, similar to other publications, focuses on network

level security. It fails to take into consideration the protection of system level compo-

nents such as the PLC’s. We argue that while it is critical that appropriate security

safeguards are implemented, they cannot protect against exploitation of code-level

vulnerabilities.

7
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The subject of SCADA system security is at the forefront of discussions involving

the protection of the national infrastructure. These processes include those elements

critical to everyday life such as water, power and natural gas. This can be seen in

documentation from various US government agencies. The Homeland Security Act

of 2002 [2], specifically addresses the concept of infiltration of a SCADA system from

a network level. Furthermore, The US Department of Energy [36], in their work-

ing document, "21 Steps to Improve Cyber SCADA Security", proposed guidelines

for improving cyber security for SCADA systems. These guidelines are intended to

help alleviate some of the most common "hacking" problems related to SCADA sys-

tem. The main focus of these documents is the accessibility of SCADA components

through IT. The guidelines do not address the hardware components used to supply

information to the SCADA system, such as the PLC or its subsequent devices. These

elements are critical in the creation of any plan which is intended to fully protect

automated systems currently and into the future. To further solidify the need for

a more complete solution, we refer to an article published by the US Department

of Homeland security as recently as October 31, 2012 [49]. This article describes a

buffer overflow vulnerability which resulted in a denial of service attack. This article

suggests the following solutions:

• "Minimize network exposure for all control system devices. Critical devices

should not directly face the internet."

• "Locate control system networks and remote devices behind firewalls, and isolate

them from the business network."

• "When remote access is required, use secure methods, such as Virtual Private

Networks (VPNs), recognizing that VPN is only as secure as the connected

devices."
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These solutions are not practical, given the current state of modern control sys-

tems. Current control system devices such as PLC’s, have on board networking

capability and as such have potential to "directly face the internet". To minimize

this capability may, in certain instances, minimize the ability of the device to deliver

data optimally. To the second point, although all industrial control system users and

developers are strongly encouraged to separate the business network functions from

the control systems functions, this may not always be practical or possible based on

availability of resources. Finally, to address the third and final point, "VPNs are only

as secure as the connected devices." PLC’s, in particularly legacy systems were not

designed as, nor intended to be, secure devices. Therefore, it is imperative that solu-

tions, such as those addressed throughout the remainder of this work, be considered

as a probable solution to a practical scenario. This problem is magnified, when you

consider that tools are readily available, and generally free, which allow hackers into

internet facing control systems [48]. Each of these reports continue to address the

problem from a network security perspective. As such, our research expands on the

current concerns by addressing the problem of software application security.

2.1 SCADA and PLC Overview

This section will give a general SCADA and PLC overview. Section 2.1.1 begins by

giving an introduction to ladder logic. Section 2.1.2 describes the PLC hardware,

specifically as it pertains to the hardware configuration types, PLC CPU, and input

and output cards. Section 2.1.3 gives an overview of SCADA systems and their

relation to PLC’s and the automation process.
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2.1.1 Overview of Ladder Logic

Ladder logic is the basis behind all PLC programming, regardless of the hardware

manufacturer. While each manufacturer may have their own programming tool, fun-

damentally, each have the same hardware and software requirements. In this section,

we will give a brief overview of ladder logic and its components.

Ladder logic programming is based on graphical symbols intended to mirror the

hardware which was once solely used in automated processes. The backbone behind

the entire concept of this language is the hardware relay. Prior to PLC’s, hardware

relays were used as the switching mechanism of choice in automated systems. The

problem with this approach was the size and adaptability of the processes. If it be-

came necessary to alter the way that a given process functioned, it required additional

hardware and generally space for expansion. Figure 2.1 shows a standard hardware

relay.

Figure 2.1: Standard Hardware Relay

In the diagram, points (1) and (3) represent the hardwire points for a normally

closed contact, points (2) and (4) the hardwire points for a normally closed contact

and points (5) and (6) the hardwire points for the activation coil. Each hardware

relay generally had one normally open contact, one normally closed contact and one
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latching coil. As a general functional overview, a standard relay would operate as

follows: the normally open and normally closed contacts are in the original (resting)

state until which point the control coil becomes activated. Once this control coil

becomes activated, the normally open and normally closed contacts change from

their resting state to their activate state. When this occurs a normally open contact

becomes closed and similarly, a normally closed contact opens. To bring a relay panel

to the level of scalability of a modern day PLC system, it would require roughly 20,000

hardware relays to do the work of one small PLC system. This takes into consideration

that the PLC has functionality built in to use internal binary points as well as the

hardwired input and output points. In terms of altering process functionality, with

the hardware relay system, each relay had to be manually rewired as needed. With the

modern day PLC system, the functionality can be changed, including the hardware,

based purely on software tools. This ease of alteration becomes the basis behind this

work.

As stated, PLC ladder logic code was designed around the concept of these hard-

ware relays. As such, PLC ladder logic software has graphical components for nor-

mally open contacts, normally closed contacts and latching mechanisms (coils). Fig-

ure 2.2 shows a basic set of PLC components.

Figure 2.2: Standard Set of PLC Components

As PLC systems began to expand, the functional components grew from only

using contacts and coils, such that would be found in a relay, to the incorporation of

other hardware components such as timer and counter mechanisms. These devices

were followed by the addition of mathematical functions, comparative routines and
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proportional integral differential (PID) loop controllers. The modern day PLC system

can perform any of the functionality of a traditional system with features that exceed

those that were available to purely hardware based systems [3]. Figure 2.3 shows a

standard ladder logic diagram.

Figure 2.3: Standard Ladder Logic Diagram

This programming style is referred to as ladder logic, due to the fact that each

line shown represents one ’rung’ on the ladder. The flow of a standard ladder logic

program is left to right, top to bottom. This flow will continue until which point

a command is encountered that would move the pointer to a different location in

the code, such as a jump, return or jump to subroutine. In the example shown, the

ladder logic would read as follows: once the start command is activated (closed),

the stop command is verified not to be activated (remains closed). If both of these

conditions are true, then the ’process A’ coil is activated. Once the ’begin process’ coil
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is activated, it’s associated ’process A’ coil on the second rung is activated (closed).

When this contact has been activated, the alarm command is verified not to be

activated (remains closed) and the ’process B’ coil is activated. Finally, once the

’process B’ coil is activated, it’s associated ’process B’ contact is activated (closed).

At this point, we move to the section of the third rung where we encounter the ’OR’

statements. This section of the ladder allows for a decision to be made between

options 1, 2 or 3 as to which will allow ’process C’ to activate. Note, as we have

worked through this example, that the contact and coil operations of PLC ladder

logic are identical to the functionality of the traditional hardware relay previously

described.

2.1.2 Overview of PLC Hardware

The hardware that makes up a standard PLC unit can be found in one of two con-

figurations / styles: ’rack mount’ or ’block’. The major difference between either of

these available configurations lies in the ability to alter the input and output devices

available to each. We will now give a general overview of each configuration:

2.1.2.1 Available Configuration Types

Block Configuration: When a PLC is considered a ’block configuration’, the hard-

ware itself comes as a standard package that is purchased with a preset amount of

input and output points, a specific communication protocol and the CPU. This con-

figuration comes as one complete unit and cannot be physically altered. The only

means available to expand this configuration is by chaining the devices together us-

ing the available communication protocol and adding more blocks to the chain. This

would allow the user to expand the number of input and output points, in very small

chunks. Figure 2.4 shows a standard block style PLC hardware device.
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Figure 2.4: Block Style PLC Configuration

Rack Mount Configuration: A ’rack mount configuration’, PLC configuration

allows the user to select, and interchange, everything in the PLC control system.

This includes the CPU type, the number and type of input and output cards and the

communications protocol. All of the hardware involved in a rack mount configuration

passes data between the input and output cards by way of a slot based chassis. This

chassis serves a two fold purpose: 1) to supply power to the entirety of the rack and

2) transmit data across a hardware back plane. Figure 2.5 shows a standard rack

mount configuration.

Figure 2.5: Rack Mount PLC Configuration

2.1.2.2 PLC CPU

The PLC CPU unit is the repository for ladder logic program as well as the processor

for the information gathered from, and delivered to, the external devices being con-

trolled by the PLC. The CPU contains all of the pertinent information required to

fully automate the process in which it is involved. The number of input and output
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cards and their types, the communication protocol, and all information contained

within the PLC data tables are located in the PLC CPU. There is only one CPU

module allowed in the rack mount configurations of the legacy systems currently

available by all of the PLC manufacturers (legacy systems represent over 80 percent

of those PLC’s currently in infrastructure areas). The most current systems allow

the designer to incorporate multiple CPU modules in the hardware design of their

process. This has the potential of allowing the software (ladder logic) designer to

split the process across multiple computing devices making code integrity even more

crucial from a security perspective.

2.1.2.3 Input and Output Cards

The external information which is transmitted to and from the PLC occurs over vari-

ous input and output (I/O) cards. These I/O cards can contain numerous connection

points, depending on the need of the user, and can be either digital or analog in rela-

tion to the type of information sent and received. We will now give a brief overview

of input and output cards and the devices they control.

Input Cards: As noted, PLC input cards can come equipped with multiple

connection points, this is solely at the discretion of the developer. A single PLC input

card generally comes with its connections points in multiples of 8, with the largest

being 64 (8, 16, 24, ..... 64). The PLC input cards gather their information from

their associated control devices such as temperature sensors, level sensors, proximity

switches, and variable frequency drives.

Output Cards: Just as with PLC input cards, PLC output cards can come

equipped with multiple connection points. The number available within any manu-

facturer generally mirror those available for the input cards. The PLC output cards

send out control information in the form of analog and digital signals. These signals

are used by the various control devices as an activation mechanism or as a set point.
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2.1.3 SCADA and Automation System Overview

The PLC is the backbone of the system architecture of an industrial network. The

information which is transmitted by the PLC to the SCADA system is collected

by the PLC’s input and output cards (rack mount configuration) or provided input

and output points (block configuration). The SCADA system PC is the information

terminal through which the control room operator, and anyone else with intended, or

unintended, access can view the real time functionality of the automated system. This

terminal is generally connected via Ethernet to the facilities existing network. The

SCADA system receives its information directly from the PLC CPU by way of the

ethernet connection provided. This could be in the form of a physical communication

card, in the case of a rack mount configuration or an internal communication protocol

if a block configuration is used. Also, it is now possible to share this information via

wireless communications cards as well, which only adds another layer to the security

issue.

A standard SCADA system [Figure 2.6] serves as the oversight device which is

connected to one or many PLC units throughout a given infrastructure system. The

SCADA computer itself is no more than a standard industrial grade computer, run-

ning a vendor specific piece of software, which is used to monitor and track the states

and conditions of all of the device’s connected to its associated controllers. These

devices are generally calibrated with the PLC and SCADA system computer upon

initial installation and assumed to be accurate thereafter. This assumption is critical

to understanding the severity of compromising the PLC. Since the control room op-

erator is taught to rely on data being received by the PLC system and the devices are

calibrated using the PLC itself as the calibration method, any individual that gains

access to the PLC can potentially directly affect the system and falsify the data that

is reported to the SCADA system.
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Figure 2.6: Standard SCADA System Configuration

2.2 SCADA and PLC Security

Most of the SCADA system security research addresses security issues raised by

network centric operation, such as secure communication, without addressing the

security needs in PLC’s. As shown in a joint report by the US Department of En-

ergy and the Presidents’ Critical Infrastructure Protection Board [36], the current

SCADA infrastructure protection focus is on the hardware housing the SCADA soft-

ware itself and not the programmable devices that are responsible for controlling all

of the processes. This report states that "Most older SCADA systems (most systems

in use) have no security features whatsoever. SCADA system owners must insist

that their system vendor implement security features in the form of product patches

or upgrades. Some newer SCADA devices are shipped with basic security features,

but these are usually disabled to ensure ease of installation." It continues by stat-

ing that "additionally, factory default security settings (such as in computer network

firewalls) are often set to provide maximum usability, but minimal security." Cur-

rent capabilities that permit wireless communications cards in PLC controllers and

SCADA systems, makes it necessary to evaluate security needs of each components.

The increased risk of access of malicious users to SCADA components, increases

the risk to the PLC code itself. Since the PLC dictates the functionality of the
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process, even if functional commands may be given through the SCADA computer, it

is crucial that it functions correctly and securely. Unfortunately, attacks against the

PLC components, as we will demonstrate in the following sections, are easy to carry

out by a sophisticated attacker. For example, just by looking at the ladder logic code

it is possible to determine the most likely points of entry into the PLC CPU from an

outside source, such as a SCADA system. To the best of our knowledge, there is no

related work that addresses the implementation of a best practices guide to correctly

writing PLC code which, in itself, could alleviate certain security concerns.

Although, protecting the system on which the SCADA backbone resides may

eliminate some of the PLC security threats it does not remove all PLC vulnerabilities.

Once access is granted though either the SCADA backbone, or any other network

medium, then the entire PLC network is open for an attack. Sophisticated attackers,

with working knowledge of the system and ladder logic, may be able to access the

PLC system directly. From the PLCs, the attacker can gain access to the SCADA

terminal. In 2003, the Davis-Besse Nuclear Power Plant was crashed by a slammer

worm that infiltrated the SCADA network. It was stated that the Safety Parameter

Display System (SPDS) "monitors the most crucial safety indicators at a plant, like

coolant systems, core temperature sensors, and external radiation sensors. Many of

those continue to require careful monitoring even while a plant is offline." [42] More

recently, a Stuxnet attack was performed on a nuclear reactor station in Iran, this

attacked directly targeted the PLC hardware to access and alter the ladder logic used

to control the facility.

In a recent ISA article [53] on the Stuxnet attack, it is stated that "prior to

Stuxnet, it was believed any cyber attack (targeted or not) would be detected by IT

security technologies such as firewalls or intrusion detection systems and defense-in-

depth would prevent damage to physical processes. However, previous actual control

system cyber incidents (malicious and unintentional) have demonstrated that many
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ICS cyber incidents are not readily detectable, and they can cause physical damage

even with existing defense-in-depth designs." The article goes on to say "it is im-

portant to note the use of the term SCADA, as these same technologies have not

been employed on many legacy non-SCADA devices such as programmable logic con-

trollers (PLCs), electronic drives, process sensors, and other field devices. Another

implicit assumption in the standards being developed such as ISA99 and the North

American Electric Reliability Corporation (NERC) Critical Infrastructure Protection

(CIP) standards is they would be comprehensive enough to address cyber attacks

against ICSs including sophisticated attacks. The inadequacy of these assumptions

against a sophisticated attack such as Stuxnet requires a detailed reassessment of ICS

cybersecurity assumptions. Stuxnet is more than data filtration, it is the first rootkit

targeted at PLCs. It is essentially a weaponized attack against a process. It has the

ability to take advantage of the programming software to upload its own code to the

PLC."

In addition to the sophisticated attackers, novice users also represent considerable

risks. The basic problems of learning bad habits and applying those bad habits into

logic diagrams could cause larger security and functionality concerns. It is imperative

that a standard be implemented that would at least provide a mechanism for a novice,

or experienced users to be able to verify and validate their programs against a defined

set of rules.

The tool and methodology we are proposing would allow the code to be easily

verified and validated as often as required. This validation would be against a known

set of suspect coding practices. Furthermore, this tool, when aligned with a vulner-

abilities ranking mechanism, could allow for early alerts into possible points of entry

with which to be concerned.
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2.3 Secure Software Verification Methods and Soft-
ware Code Review Tools

The 24 Deadly Sins of Software Security: Programming Flaws and How to Fix

Them [25] outlines best practices for generalized software development. We cross

reference these methods to expand and validate our table of vulnerabilities. SOA De-

sign Patterns [13] outlines various methods for creating correct design patterns. We

use the methods found within this text as a framework for the creation of the design

patterns which support secure software development. Furthermore, there are other

code security and static analysis tools currently in existence for traditional software

development. However, none of these tools are capable of handling ladder logic soft-

ware. Moreover, the recommended best practices are too general to provide valuable

guidance in the complex context of SCADA control systems [27]. Taxonomies of soft-

ware errors can be used to model PLC ladder logic vulnerabilities. Seven Pernicious

Kingdoms: A Taxonomy of Software Security Errors [10] suggests a methodology for

building a taxonomy to "help developers and security practitioners understand com-

mon types of coding errors that lead to vulnerabilities. By organizing these errors

into a simple taxonomy, we can teach developers to recognize categories of problems

that lead to vulnerabilities and identify existing errors as they build software." We

believe a similar solution can be developed which specifically addresses PLC ladder

logic software. Our intention is to assist the practitioner in understanding the com-

mon types of errors as stated above, while providing a methodology to mitigate these

errors. This, in turn, will provide a means to mitigate the security risk created by

the errors documented in the vulnerability taxonomy. Furthermore, Landwehr [1]
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classified security flaws based on three dimensions, genesis, time of introduction and

location. The genesis classification creates two subcategories for flaws, intentional

and inadvertent. The Severity Chart that we create provides a similar grouping for

the development of the Severity Engine within the Static Analysis Tool: novice and

malicious users.

2.4 Limitations of SCADA/PLC Security Research

The current SCADA / PLC security research is limited, due to three critical areas.

Lack of understanding of all of the exposed entry points into the automation system,

which leads to more SCADA software centric research. The lack of sufficient training

by current PLC code developers. This creates a culture of trial and error program-

ming, which is due to a lack of best practices standards. The current research in

this field does very little to address the training component and development of a

best practices approach to PLC coding. Most importantly, there is a lack of tools

which can be implemented and used to test current and future code, both after and

during development. This network-centric approach, which is important, has become

a network biased approach. That is, the research focuses more on the commonly

accepted remote access component and seems to ignore the vulnerability created by

the existence of insecure application software [47,48,49].
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Chapter 3

Proposed PLC Security Framework

3.1 PLC Code Analysis (PLC-SF)

In this work, we address the vulnerabilities in the PLC code itself. The components of

our work are shown in Figure 3.1. The input of the PLC Security Framework (PLC-

SF) is PLC code that has passed and been accepted by the ladder logic compiler. The

Static Analysis Tool, we have developed [51], uses the following three components:

PLC Security Vulnerability Taxonomy, Severity Chart and Design Patterns. The

output of PLC-SF is list of vulnerabilities and associated design patterns to remove

the vulnerabilities.

Currently PLC (ladder logic) code compilers announce any of three states (or a

combination or a combination thereof) after the code is compiled. These states are

’compiled without errors’, ’compiled with warnings’, and ’compiled with errors.’ It is

assumed by both novice and experienced coders that if the compiler announces ’com-

piled without errors’ that the code is correct. Code that is ’compiled with warnings’

may have minor bugs that do not restrict the compilation and the execution of the

code by the PLC. Code that is ’compiled with errors’ indicates the error, and this code

cannot be uploaded to the PLC as long as those error(s) exist. We do not address

these errors in this work. However, we anticipate that our Static Analysis Tool will

also eliminate some of these errors. The Static Analysis Tool uses the vulnerability

taxonomy and the severity chart to detect and rank ladder logic vulnerabilities. It

will then compare these vulnerabilities against a set of known design patterns, to
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determine a corrective action which would alleviate the vulnerability. We now give a

brief description of each component within the Static Analysis Tool.

Figure 3.1: Proposed Security Framework PLC-SF

PLC Security Vulnerability Taxonomy: The vulnerability taxonomy is used

to conceptualize the vulnerabilities. These vulnerabilities are then depicted using

state transition diagrams. Using both the Vulnerability Taxonomy and the associ-
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ated state transition diagrams, a Vulnerability Engine was created. This Vulnerability

Engine will determine the existence of a vulnerability within the various levels of the

taxonomy. The taxonomy that we have created categorizes potential PLC vulnera-

bilities, as initially depicted in Figures 4.2 through 4.10. The taxonomy is intended

to help answer the following questions: "How did this vulnerability occur, and how

can it be exploited?" This will then allow for the formulation of detection and preven-

tion methods. Our approach to model PLC vulnerabilities is extensible, representing

an initial characterization methodology which can be continually expanded as new

vulnerabilities surface. Initially, the taxonomy verifies that, in fact the vulnerability

in question is a design-level vulnerability. It is then determined rather the perceived

vulnerability is hardware (physical) or software (virtual) based. If it is determined

to be hardware based, then the specific subclass is added to the taxonomy, and its

physical characteristics mapped. If it is determined to be software-based, then it is

determined if a class should be created, or if a subcategory already exists to insert

the vulnerability. The Vulnerability Taxonomy will be discussed in detail in Chapter

4, Section 4.4.

Design Patterns: Design patterns show methods of mitigating the vulnerabil-

ities encountered in PLC ladder logic code. We have created design patterns to

mitigate the various vulnerabilities listed in the Vulnerability Taxonomy. The design

patterns which were modeled, were used to create the Design Pattern Engine. Once

a vulnerability is determined to exist, the vulnerability is cross referenced against a

list of design patterns in the Design Pattern Engine. The Design Pattern Engine gen-

erates design patterns to be given to the user during the output phase of the Static

Analysis Tool. The design patterns which were created will be shown and explained

in Chapter 5.1.

Table of Vulnerabilities: The table of vulnerabilities groups the vulnerabilities

based on the potential consequences of an exploitation. We have assigned a severity
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rating to each vulnerability based on the impact of the outcomes to the PLC and

SCADA system. Each vulnerability is linked to the table based on the severity level

assigned. This will allow the defense to rank the vulnerabilities.

Severity Chart: The Severity Chart links the severity level assigned from the

table of vulnerabilities to potential effects in both the PLC and SCADA system

platforms. The Severity Chart is the basis on which the Severity Engine is created.

The Severity Chart is shown in Table 4.1.

Static Analysis Tool: As previously stated, the Static Analysis Tool takes as

its input PLC ladder logic code, determines the existence of a vulnerability within

that code, the severity level, or levels, that exist within that vulnerability and the

design pattern, or patterns, that can be used to map the best probable solution. This

is accomplished by the Static Analysis Tool using three different engines to represent

the three distinct internal components. These are the taxonomy, design pattern and

severity engines and will be explained in Chapter 6.

List of Vulnerabilities and Associated Design Patterns: The output will

consist of a list of the vulnerabilities and their associated design patterns as deter-

mined by the static analysis tool. The Static Analysis Tool will determine the exis-

tence of the vulnerability, the severity level and the associated design pattern based

on the existence of certain strings in regular expressions. This will be explained in

detail in Chapter 6.

3.2 Malicious Entry Points

We also studied the interaction between the PLC and other SCADA components.

The data input source for the PLC ladder logic are numeric tables that store sensor

(device) data. Figure 3.2 demonstrates the standard control flow of a SCADA system.

The numeric tables, which consist of binary, floating point, and integer data are the
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control repository for the entire system. Erroneous data in these tables may corrupt

PLC execution and, therefore, the entire SCADA system. In addition to direct access,

there are three ways to modify table entries; data from hardware devices, the PLC

ladder logic, and the SCADA PC.

Figure 3.2: SCADA System Control Flow

Hardware devices are devices that monitor or initiate process execution such as

variable frequencies drives, proportional-integral-derivative (PID) controllers and Hu-

man Machine Interface (HMI) devices. This classification includes all of the physical

devices that have the ability to directly receive from, or deliver data to, the PLC. Al-

though wireless communications mediums are available for certain hardware devices

and more recent PLC controllers, the communication medium of choice is still the

hardwired approach. Using the hardwired approach as our basis of communication,

hardware devices can be further classified as those devices which are wired directly

to a PLC input or output card.

The PLC Ladder logic, has a direct link to the data tables. The ladder logic code,

as well as the data tables are embedded into the CPU on the PLC once they are

uploaded. Therefore, there is no external communication necessary to maliciously

alter the data, directly or via PLC code, if someone accesses the PLC CPU.
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The SCADA PC is used not only to view data but can also be configured to allow

the user to input data directly into the PLC, by way of the control tables. This ability

is through the database that is resident on the SCADA PC itself. This database is

part of the front end of the SCADA package that is installed on the PC. The SCADA

PC database, not unlike the data tables on the PLC, not only holds information

in the form on numeric data, but also data location information for write and read

purposes into the data tables.

Figure 3.3 illustrates the four data entry points that may be exploited by mali-

cious users. Users may exploit these points of entry, directly or indirectly, to modify

control data. The dashed lines represent the insecure pathways that exist between

each SCADA component. We do not generalize the hardware devices into a specific

group that can be accessed directly. This is due to the existence of multiple devices,

currently in use in the field, that do not have the capability of direct network access.

Figure 3.3: SCADA System Control Flow Possible Malicious Entry Points
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Chapter 4

Vulnerabilities Analysis

Current ladder logic compilers are not designed to detect security vulnerabilities or

subtle logic errors. PLC code, that was compiled without error, may still contain vul-

nerabilities. These vulnerabilities can be subtle enough that the novice user would

not be aware of the possible security risks they represent. Malicious users may ex-

ploit these vulnerabilities and cause severe damage. In this chapter, we outline the

vulnerability taxonomy and the consequences of their exploitation.

We also associate the vulnerability taxonomy, a severity chart and potential ac-

tions that can be carried out by malicious users. Each attack (error) has severity

ratings assigned to it, as shown in Table 4.2. Section 4.3 develops a classification

mechanism for process critical and nuisance errors as previously defined. The cate-

gories shown are broad in scope so as not to be process limiting or process specific.

Table 4.3 lists the error type, error classification and opportunities presented to a

malicious user through the existence of each error.

4.1 Attack Severity Analysis

This section outlines the attack severity chart as well as the novice and malicious

users ability to create each level of severity.

We will present detailed descriptions of the severity classifications and examples

of their associated effects. These classifications will allow for the foundation of a

best practices guide. Table 4.1 gives a general and functional overview of each of
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the severity rankings created [50]. This table outlines the severity level which would

be applied under each of the scenarios shown. Each row of the table represents a

different level of security, ’A’ being the most severe and ’D’ being the least. Each

column represents the effects in the PLC and the SCADA system, respectively.

Table 4.1: Severity Chart

Severity Effects in PLC Effects in SCADA
A PLC code will not perform

the desired tasks
Will not allow for remote
operation of the process

B Serious hindrance to the
process

The process may appear
to be operating correctly,
but given optimal condi-
tions, the machine could be
thrown into an unexpected
process failure

C Adversely effects PLC code
performance. A minimal
cost effect to the project but
a "quick fix" is possible.

Data shown on the SCADA
screen is most likely false.

D Effects the credibility of the
system, but PLC code is op-
erable.

Incorrect data could ran-
domly be reported causing
a lack of confidence in the
system and therefore caus-
ing the system to be "disre-
garded" even if the informa-
tion is relevant.

4.1.1 Severity Classifications

It is critical that each severity level depicts not only the outcomes that can be detri-

mental to the SCADA system as a whole, but the effect on the individual components

as well. These individual components can be any of the automated components which

are PLC controlled. We will now give a description of each of severity level.
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Severity Level ’A’

• A concern is considered as severity level ’A’ if its existence could potentially

cause all, or part, of a critical process to become non-functional. Furthermore,

residual effects may include malfunctioning of other processes who’s outcomes

are determined by the process at risk. For example, consider the situation

when the mechanism that causes heat to be released from a process is no longer

functional. However, the heat continues to be generated into the process. If

this situation were not corrected expediently then the device that stores the

energy may be damaged, even destroyed.

Severity Level ’B’

• A concern is considered as severity level ’B’ if its existence could potentially

cause all, or part, of a critical process to perform erratically. This differs from

severity level ’A’ in terms of the absolution of the result. Severity level ’A’

concerns have the potential to cause permanent process failure, whereas level

’B’ concerns would cause incremental process interruptions.

Severity Level ’C’

• Severity level ’C’ concerns are denoted as quick fixes. The errors are most likely

created by 1) a novice user without a good fundamental knowledge of PLC

programming components or 2) a malicious user who wishes to cause functional

problems.

Severity Level ’D’

• Severity level ’D’ concerns involve providing false or misrepresented information

to the SCADA terminal itself.
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4.2 Examples of Severity Level Effects

In this section, we present examples of each of the severity levels defined in section

4.1.1. We will use the data from table 4.3 as the basis for each.

Example of Severity Level ’A’:

Hidden Jumpers: A hidden jumper could involve either a force, an empty branch,

or a branch with a normally closed contact that has no trigger coil associated with

the contact. Hidden jumpers have the potential to be a severity level ’A’ concern in

that they could cause all, or part, or a given rung to be inoperable.

Example of Severity Level ’B’:

Duplicate Objects: If a duplicate object is installed in the ladder logic, it presents

the potential for the occurrence of two distinct issues. First, the duplicate object

could fail to let either rung, in which the logic is installed, to activate. Second,

duplicate objects can operate on an incremental trigger basis. In this scenario, the

logic would randomly select one of the objects to activate.

Example of Severity Level ’C’:

Logic Errors: A logic error could involve any element or number of elements within

the context of the PLC program itself. We will show this error, in context, using a

timer element. The concern lies in the alteration of the timer preset. Initially, the

timer preset would be set to a certain value. If a novice or malicious user alters this

preset value positively or negatively, severe damage could occur within the process.

Assuming the process is programmed based on time delay and not on physical sensor

technology, placing one timer out of sequence potentially could alter the entire pro-

cess.

Example of Severity Level ’D’:

Creation of false information: Information that is incorrectly transmitted due to

incorrect implementation of specific functions such as timers or math functions.
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4.3 Potential Exploitation of Coding Errors

We start the section with a discussion on the effect of the PLC users’ knowledge.

Then, we present a collection of coding errors and intentional attacks against PLCs

and SCADA networks.

4.3.1 Knowledge of the User

As shown in Table 4.2, we outline a set of criteria based on the knowledge of the

user. We define a user both in terms of a novice user as well as a malicious user.

We acknowledge that a novice user could be malicious and a malicious user could

make unintended mistakes just as a novice user. Our contention for these two initial

knowledge level classifications is not to disregard the possibilities of crossover, but

only to serve as a basis for preliminary data development. Recognizing the advanced

level of a malicious user as opposed to a novice user, Table 4.2 makes the assumption

that any function that can be performed by a novice user could also be performed by a

malicious user. Under this criteria, we will apply the following definitions throughout

the remainder of this dissertation: A novice user is considered to be an individual

that is authorized to work on and view the system, but lacks the correct training

or experience. A Malicious user is considered as both an authorized user with

malicious intent as well as an individual that is not authorized to access the system.

Typically a malicious user is capable of performing all of the functions that would

be expected of a novice user. An unauthorized malicious user may also have the

capability to hack into the SCADA system, or any computer that would have the

programming software required to view, or alter, the PLC ladder logic program.

Furthermore, a malicious user would most likely have an advanced knowledge of

control systems and their integrated components which were explained in Section 3.2

and shown in Figure 3.3.
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Table 4.2: Severity Rating vs. Attacker’s Knowledge

Severity Novice User Malicious User
A Inserts incorrect code.

Fails to remove unused ta-
ble locations prior to com-
pilation.
Incorrect IP addressing of
PLC network components.

Inserts hidden IO reference
points as a potential back
door into the program.

B Lack of knowledge of cor-
rect implementation of
certain software compo-
nents.
Lack of knowledge of cor-
rect implementation of
certain hardware compo-
nents.

Uses advanced knowledge
of software and hardware
implementation to correctly
place ladder logic code and
IO reference points in incor-
rect locations.

C Detailed labeling of rungs,
components and devices.

Uses the current notation
system to incorrectly label
rung and component func-
tionality.

D Incorrectly scales values to
be sent to the SCADA dis-
play

Everything that a novice
user may unintentionally
perform.

We give a brief overview of the coding errors and potential exploitation by mali-

cious users. In Table 4.3, these errors are organized into two main categories, process

critical errors and nuisance errors.

Process Critical Errors represent those errors that could cause a severe failure in

the process operation and can be affected once access is gained to the PLC CPU.

Nuisance Errors represent those errors that would cause minimal process issues

and are relatively easy to find.
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4.3.2 Process Critical Errors

We have identified the following process critical error categories. We also show ex-

amples of how to exploit of some of these errors.

• Duplicate Objects: Objects that have been defined more than once. These

objects could include things such as coils, timers and counters. Using our pro-

posed severity rating system, this would have a severity rating of ’A’ based on

the potential for total process failure.

• Unused Objects: Objects which were defined in the initial database, but were

never used in the ladder logic. These pre-loaded variables can be used for

random functions. This is given a severity rating of ’A’ since the extent to which

the unused objects are employed will determine the extent of the consequences.

• Scope and Linkage Errors: Such errors deal with the deletion of, or failure to

install, a communication block between two or more separate ladders in a PLC

program. This would have a severity rating of ’A’ based on the potential for

total process failure.

• Logic Errors: Errors that could occur result in state transition, timing, control

and data flow issues. This error could be classified as ’A–C’, depending on the

extent of the logic error and the specific device effected.

• Syntax Errors (or warnings): Warnings that were problematic in compilation,

but compilation was not restricted. This code is downloaded to the processor

with no more than a warning to the individual downloading to the device.

This error is classified as a level ’B’ concern due to the fact that initially, no

symptoms were present and intermittent failure could occur.
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4.3.3 Nuisance Errors

We have identified the following nuisance error categories:

• Hidden Jumpers: These software jumpers effectively bypass a portion of a rung

in a ladder logic routine. These are easily hidden to the untrained eye, and are

not searchable utilizing the current PLC platforms. This error has the potential

to be classified at any level. The severity and consequences depends solely on

the location of the jumper.

Table 4.3: Development Error vs. Opportunity

Error Type Taxonomy Classification Malicious User Opportu-
nity

Process Critical / Nuisance Duplicate objects installed Alteration of one or more of
the duplicate objects

Process Critical Unused objects Pre-loaded variables allow for
an immediate entry point into
the system with no additional
requirements on the database

Process Critical Scope and linkage errors Installation of jump to sub-
routine command which
would alter the intended file
to file interaction

Process Critical Logic errors Immediate entry point to
logic level components such
as timers, counters and arith-
metic operations

Process Critical Syntax Errors Could cause the system to act
intermittently erratic, there-
fore causing future alarms to
be ignored

Process Critical / Nuisance Hidden Jumpers Could allow a placement point
for system bypass scenario to
occur
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4.4 Building the Vulnerability Taxonomy

In this section, we we build a vulnerability taxonomy. The purpose of the taxon-

omy is to aid the process of detecting these vulnerabilities in the PLC code. The

taxonomy is intended to be dynamic by design, and was created so that it can be

continually expanded upon as future versions of PLC’s are created and new errors

discovered. Figure 4.1 gives a generalized overview of the Vulnerability Taxonomy.

The classifications within each level, and their attributes, will be further explained

throughout the remainder of this section.

Figure 4.1: Vulnerability Taxonomy

The top level of the taxonomy is shown in Figure 4.2. Figure 4.3 represents

the hardware input components to the PLC system with a direct link to the data

36



www.manaraa.com

tables of the PLC. In this work, we focus on software-based vulnerabilities. Figure

4.4 represents the possible software error classifications. These classifications are

further explained in Table 4.3. Figures 4.5 through 4.10 represent each subclass of

the software components in which the errors are likely to be found. They also show

the security risks which could be encountered under each subclass.

Figure 4.2 represents the highest level of the Vulnerability Taxonomy. The errors

that we have chosen to focus on in this dissertation are design-level errors as shown.

Design-level errors can be further broken down into the sub-classes of hardware based

and software based errors. We will be focusing our research efforts on the software

based errors throughout the remainder of this work. The hardware-errors are noted

to show that we recognize the existence of these errors and the security concerns

that various hardware systems could potentially introduce. We will now define the

attributes of each of these areas.

Figure 4.2: Ladder Logic Vulnerability Taxonomy: Design Level Error

Design-Level Errors: The attribute associated with design-level errors is the

error type. The possible designations for error type are hardware error or software

error, which would lead us to the sub-categories previously mentioned.

Hardware Based (Physical) Errors: The attribute associated with hardware

based (physical) errors is device type. The possible designations for device type are
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switches, relays, sensors or pushbuttons. These attributes will lead us to our next in

the Vulnerability Taxonomy where these attributes will be associated with hardware

components individually.

Figure 4.3 represents the hardware components of the second level of the Vulner-

ability Taxonomy. The hardware based (physical) errors are broken down into the

subcategories of switches, relays, sensors and pushbuttons. We will now define the

attributes of each of these areas.

Switches: The attribute associated with switching errors is the signal type. The

possible designations for signal type are analog or digital, depending on the signal

being conveyed through the specific input / output card used.

Relays: The attribute associated with relay errors is relay type. The possible

designations for relay type are input or output. This designation depends on whether

we are tracking input data or output data for a particular security risk.

Sensors: The attribute associated with sensor errors is sensor type. The possible

designations for sensor type are analog or digital, again depending on the type of

sensor used.

Pushbuttons: The attribute associated with pushbutton errors is style. The

possible designations for style are momentary or latched depending on the type of

hardware used.
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Figure 4.3: Ladder Logic Vulnerability Taxonomy: Hardware

Software Based (Virtual) Errors: The attributes associated with software

based (virtual) errors are the error class and error subclass. At this level of the Vul-

nerability Taxonomy, the possible designation for error class is design-level error. The

possible designations for error subclass are logic errors, duplicate objects installed,

unused objects, and hidden jumpers.

Figure 4.4 represents the software components of the second level of the Vulnera-

bility Taxonomy.

Figure 4.4: Ladder Logic Vulnerability Taxonomy: Software

The software based (virtual) errors are broken down into the subclasses of logic

errors, duplicate objects installed, unused objects and hidden jumpers. The
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single attribute to each of these error classifications will be the error subclass. This

attribute, will be used to determine which subclass of each software error type is be-

ing addressed. Each of the subclasses of Software Based (Virtual) Errors will be

addressed in the following sub-sections: sub-section 4.4.1 presents Logic Errors, sub-

section 4.4.2 presents Duplicate Objects Installed Errors, sub-section 4.4.3 presents

Unused Objects Installed Errors and sub-section 4.4.4 presents Hidden Jumpers In-

stalled Errors. It is also possible that there may be multiple sub-classes referenced

simultaneously, at this level, as any given rung of ladder logic has the potential to

have multiple security risks which may need to be addressed. We will now define the

attributes of each component at the various levels.

4.4.1 Logic Errors

Figure 4.5 represents the logic error subclass. Logic errors are further categorized as

Placement and Element Component Errors or Scope and Linkage Errors.

The set of placement and element component errors are broken out as to their location

in the PLC ladder logic itself, beginning or end of the rung functions. It should also

be noted that between these subclasses, there is a potential of crossover as shown.

Logic Errors: The attribute associated with logic errors is the error subclass.

The possible designations of this attribute are placement and element component

errors or scope and linkage errors. This attribute will make the determination as

to the type of subclass of logic error affected. The component levels of these two

classifications are not mutually exclusive. It is possible, for example, that a JSR

element could fall into each category, by way of its placement in the ladder logic

itself, as well as its potential to contribute to a scope and linkage error.

40



www.manaraa.com

Figure 4.5: Ladder Logic Vulnerability Taxonomy: Logic Errors

Placement and Element Component Errors: The attribute associated with

this classification is the PEC error subclass. The possible designations for this at-

tribute are beginning of the rung function or end of the rung function. This attribute

will make the determination as to the placement criteria which would be enforced to

correct the error and alleviate the security risk.

Scope and Linkage Errors: The attributes associated with this classification

are:

• Element affected, which can have the designations of jump to subroutine (JSR),

jump (JMP), label (LBL) or return (RTN).

• Security risk, which has the designation of man in the middle attack. These

elements, in whole or in part, have the ability to provide a mechanism to open
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the door to a man in the middle attack. An attacker could use a misdirected

JMP command for example, to insert their own code at the misplaced location

and cause multiple errors to occur before the RTN command returned the code

to the intended location. This would cause the processor to run the original

code up to the point of the JMP, read the inserted code and then continue

along the original path, with the possibility of the introduction of a new set of

parameters.

• Severity Level, which can have a designation of ’A - D’ depending on the type

of code alterations inserted into the linked file in question. Each sub-class of

Software Based (Virtual) Errors, upon reaching a leaf point, and security risk

attribute, will also have the attribute of severity level to associate with the

security risk.

Beginning of the Rung Functions: The attributes associated with this clas-

sification are:

• BOR Function classification, which can have the designations of normally open

or normally closed contacts or comparative functions.

• Correctable by moving the associated coil, which yields a yes or no response.

• Incorrect rung placement, which yields a yes or no response.

Figure 4.6 represents the the first subclass of logic errors which is shown as be-

ginning of the rung functions.
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Figure 4.6: Ladder Logic Vulnerability Taxonomy: Beginning of Rung Functions

The beginning of the rung functions are further defined as normally open and

normally closed contacts or comparative functions. We will now define the attributes

of each beginning of the rung subclass.

Normally Open and Normally Closed Contacts: The attributes associated

with normally open and normally closed contacts are contact type affected and contact

security risk created. The possible designations of the contact type affected are

normally closed or normally open. The possible designations of the contact security

risk created are rung blocking or rung bypass.

Comparative Functions: The attributes associated with comparative functions

are comparative function type affected and comparative function security risk created.

The possible designations of the comparative function type affected are EQU, NEQ,

GRT, LES, GEQ, LEQ, LIM. The possible designations of the contact security risk

created are rung blocking, rung bypass, delayed start or delayed stop.
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End of the Rung Functions: The attributes associated with this classification

are:

• EOR function classification, which can have the designations of timer, counter,

mathematical or data handling functions, or program flow instructions. This

attribute assists in further dissecting the error to a specific element or set of

elements. As such, this attribute is non exclusive. It is possible for the static

analysis tool to determine the existence of multiple errors within the same rung

or set of rungs.

• Correctable by moving the associated trigger, which yields a yes or no response.

• Incorrect rung placement, which yields a yes or no response.

Figure 4.7 represents the the second subclass of logic errors which is shown as end

of the rung functions.

Figure 4.7: Ladder Logic Vulnerability Taxonomy: End of Rung Functions
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The end of the rung functions are further defined as timer functions, counter func-

tions, program flow instructions, mathematical functions and data handling functions.

We will now define the attributes of each end of the rung subclass.

Timer Functions: The attributes associated with timer functions are the timer

type affected, TF security risk created and severity level. The possible designations of

the timer type are timer on (TON), timer off (TOF) or retentive timer on (RTO). The

possible designations of the TF security risk created are race conditions, premature

start, delayed start, premature finish and delayed finish. Severity Level, can have a

designation of ’A - D.’ Note that with any of these security risks related to timers, it

has the ability to affect such things as the heating pattern of a heating process.

Counter Functions: The attributes associated with counter functions are counter

type, CF security risk created and severity level. The possible designations of the

counter type affected are count up (CTU), count down (CTD) or reset (RES). The

possible designations of the CF security risk created are incorrect iterations and qual-

ity concerns. Severity Level, can have a designation of ’A - D.’

Program Flow Instructions: The attributes associated with program flow

instructions are the program flow instruction type affected, PFI security risk created

and severity level. The possible designations of the program flow instruction type are

jump (JMP), jump to subroutine (JSR), label (LBL) and return (RET). The possible

designation of the PFI security risk created is man in the middle attack. Severity

Level, which can have a designation of ’A - D.’ These elements, in whole or in part,

have the ability to provide a mechanism to open the door to a man in the middle

attack. An attacker could use a misdirected JMP command for example, to insert

their own code at the mislabeled location and cause multiple errors to occur before

the RTN command returned the code to the intended location. This would cause the

processor to run the original code up to the point of the JMP, read the inserted code

and then continue along the original path, with the possibility of the introduction of
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a new set of parameters. Note: Program flow instructions could also be considered

as a subclass of scope and linkage errors, depending on how the error was initiated.

Mathematical Functions: The attributes associated with mathematical func-

tions are mathematical function type, MF comparative function security risk created

and severity level. The possible designations of the mathematical function type are

basic mathematical functions or trigonometric functions. The set of basic mathe-

matical functions is considered to be addition, subtraction, multiplication, division,

absolute value and logarithms; while the set of trigonometric functions is considered

to be sine, cosine, tangent, arc sine, arc cosine and arc tangent. The possible des-

ignations of the MF contact security risk created are numerical (integer, real and

floating point) data manipulation and false numerical data received by the SCADA

PC. Severity Level, can have a designation of ’A - D.’

Data Handling Functions: The attributes associated with data handling func-

tions are data handling function type, DHF security risk created and severity level.

The possible designations of the data handling function type are file fill (FLL), OR,

AND, NOT, exclusive or (XOR), move (MOV) and copy (COP). The possible des-

ignations of the contact security risk created are binary data manipulation and false

binary data received by the SCADA PC. Severity Level, which can have a designation

of ’A - D.’

4.4.2 Duplicate Objects Installed

Figure 4.8 represents the subclass of duplicate objects installed. The attributes of

the classification of duplicate objects installed are duplicated type, OTE security risk

created, JSR security risk created and severity level. We will now define each of these

attributes.
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Figure 4.8: Ladder Logic Vulnerability Taxonomy: Duplicate Objects Installed

• Duplicated Type: The possible designations for this attribute are output enable

(OTE) or jump to subroutine (JSR).

• OTE Security Risk Created: The possible designations for this attribute are no

trigger or false trigger created.

• JSR Security Risk Created: The possible designations for this attribute are no

trigger possible or man in the middle attack.

• Severity Level: Severity Level, can have a designation of ’A - D.’

4.4.3 Unused Objects

Figure 4.9 represents the subclass of unused objects. The attributes of the classifi-

cation of unused objects unused object type, UOT security risk created and severity

level. We will now define each of these attributes.

Figure 4.9: Ladder Logic Vulnerability Taxonomy: Unused Objects Installed

• Unused Object Type: The possible designations for this attribute are broad

and can be considered any component throughout this taxonomy.
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• UOT Security Risk Created: The possible designation for this attribute is open,

pre-instantiated entry points. If any if of the components listed throughout this

taxonomy are instantiated (created within the data table during the initial de-

sign process) and unused in the completed code, they are available for immediate

insertion by an attacker upon gaining access to the system with no additional

effort required.

• Severity Level: Severity Level, can have a designation of ’A - D.’

4.4.4 Hidden Jumpers

Figure 4.10 represents the subclass of hidden jumpers. Hidden jumpers are further

defined as forces or rung jumpers. This distinct is made on the basis of how the

hidden jumper is created. A force, is created by activating a mechanism within the

PLC CPU which will allow you to override certain elements within the PLC. Rung

jumpers are physically written into the ladder logic code itself and allow the user to

bypass any number of components in the same rung simultaneously. We will now

define the attributes at each of the level in the hidden jumper subclass.

Figure 4.10: Ladder Logic Vulnerability Taxonomy: Hidden Jumpers
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Hidden Jumpers: The attribute associated with hidden jumpers is the jumper

type. The possible designations of this attribute are force or rung jumpers. This

attribute will make the determination as to the type of jumper mechanism which

has been created. Theoretically, the component levels of these two classifications

are not mutually exclusive. It is possible, for example, to have a forced element

condition located within the boundaries of a rung jumper. The static analysis tool

would address each of these areas withing the same rung.

Force: The attributes associated with this classification are force type, force

instantiation method, force security risk and severity level. The possible designations

for each attribute are shown below:

• Force type, can have the designations of force on or force off.

• Force instantiation method, which has the designation of multiple forces de-

tected or single force detected. Knowing the number of forces active, assists

the determination of rather the forces were placed as a testing mechanism by

the designer, and inadvertently left on, or potentially by a malicious attacker.

The fewer forces seen in a given code file, the less likely it was performed by a

person with malicious intent.

• Force security risk, which has the designation of ’rung-bypass’ or ’element-

bypass’ depending on the number of forces installed in a single rung. The

designation of ’rung-bypass’ will be used if a force was used to bypass every

element within a given rung. The designation of ’element-bypass will be used

if a force was used to bypass a single element within a given rung, when more

than one element exists in that rung

• Severity Level, can have a designation of ’A - D.’
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Rung Jumpers: The attributes associated with this classification are:

• Blank sub-rungs, which yields a yes or no response.

• Jumper instantiation method, which has the designation of ’blank’ or ’contact

override’. The designation of blank would be given if a ’yes’ response is given

to the ’blank sub-rung’ attribute. The designation of ’contact override’ would

be given, if an instance is encountered where there exists a sub-rung which is

entirely comprised of contacts which are in a closed state. This also serves as

a secondary mechanism to check for the non-existence of an activation coil, as

this could be the case if the normally closed contacts never encounter an open

state.

• Jumper Security Risk, which has the designations of ’rung-bypass’ or ’element-

bypass’ depending on the type of jumper and degree to which the jumper is

installed. The designation of ’rung-bypass’ will be used when a rung jumper

(branch) is used to bypass every element within a given rung. The designation

of ’element-bypass’ will be used when a rung-jumper is used only to bypass a

single element within a given rung.

• Severity level, which can have a designation of ’A - D.’

4.5 Modeling PLC Vulnerabilities

We have modeled the known vulnerabilities using state transition diagrams. Our

approach is motivated by the success of using state transition diagrams to model

intrusion patterns [20,28]. We will create state transition diagrams to represent each

vulnerability. The potential errors shown in table 4.3 represent the initial findings of

vulnerabilities which we have identified during our research. Using this we generalize
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each vulnerability using state transition diagrams. Our approach can be used to

model new vulnerabilities that are detected in the future.

4.5.1 State Transition Diagram Analysis: Race Condition

The race condition, as shown in Figure 4.11, occurs as the timer done bit (T4:/DN)

opens at the exact same moment that the timer (T4:0) reaches its preset value. This

causes the timer to cycle and the process resets, never allowing a shutdown to fully

occur. The state transition diagram depicting this race conditions is shown in Figure

4.12. Figure 4.13 shows the corrected state transition diagram for this scenario.

Figure 4.11: Race Condition: Ladder Logic Incorrect
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Figure 4.12: State Transition Diagram: Existing Race Condition
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Figure 4.13: State Transition Diagram: Elimination of Race Condition

Figure 4.14 depicts one possible solution to the problem, wherein the shutdown

process begins after a preset amount of time; again, as determined by the timer preset

value.

Figure 4.14: Ladder Logic: Elimination of Race Condition
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4.5.2 State Transition Diagram Analysis: Comparative Func-

tions

Comparative functions, if incorrectly coded, can insert a security risk such that a

malicious user could insert incorrect data into the process through the comparative

function. This new data could cause changes in the process sequence or cause the

process to be aborted in its entirety. Figure 4.15 shows the state transition diagram

which depicts the security risk. Note that if any portion of the comparative function

elements are hard coded, the potential for a security risk exists and the altered value

would be returned to the system. Figure 4.16 shows the state transition diagram

which depicts the correct process flow using a comparative element. The ladder

logic structure for this, and the remaining state transition diagrams, are discussed in

Chapter 5 during our discussion of the associated design patterns.
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Figure 4.15: State Transition Diagram: Comparative Function Risk
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Figure 4.16: State Transition Diagram: Comparative Function Risk Eliminated

4.5.3 State Transition Diagram Analysis: Missing Trigger

Coil

A missing trigger coil, which is used to activate a like named contact, will eliminate

the activation of a given process. This has the potential security risk of blocking

certain embedded safety measures written into the PLC ladder logic program. Fig-

ure 4.17 shows the state transition diagram which depicts the security risk. As the

loop condition shows, once a given contact is found, the PLC will attempt to pair

that contact with its related coil and check the activation status of that coil. If an

associated coil cannot be found, the rung in which the contact is located potentially

will not activate. Figure 4.18 shows the state transition diagram which depicts the

correct process flow in which the contact is correctly paired with its activation coil.

56



www.manaraa.com

Figure 4.17: State Transition Diagram: Missing Trigger Coil
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Figure 4.18: State Transition Diagram: Missing Trigger Coil Error Eliminated

4.5.4 State Transition Diagram Analysis: Scope and Linkage

Errors

Scope and linkage errors, as they pertain to ladder logic code occur when a file, or

part of a file, is accessed due to its unintended availability. This file can currently

exist on the PLC itself with the intention of being used for a process variation, or can

be inserted by a malicious user. This has the potential security risk of allowing for the

insertion of large quantities of malicious data through one entry point. Figure 4.19
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shows the state transition diagram which depicts the security risk. In this figure, File

A makes an unintended call to file B. File B inserts malicious data into the system

by way of code which was instantiated by the attacker. This malicious data is now

returned back to file A to continue into the remainder of the process. Figure 4.20

shows the state transition diagram which depicts the correct process flow in which

the unintended element is removed.

Figure 4.19: State Transition Diagram: Scope and Linkage Risk
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Figure 4.20: State Transition Diagram: Scope and Linkage Risk Eliminated

4.5.5 State Transition Diagram Analysis: Hidden Jumper

Inserted

The insertion of what are known as hidden jumpers in ladder logic generally occur

in two forms: 1) through the use of override forces which are built into the PLC

programming tool itself and 2) through the use of blank sub-rungs, also referred to

a branch elements. Hidden jumpers introduce the security risk of allowing sections

of rungs to be bypassed and the inadvertent trigger, or refusal of trigger of a given
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rungs output coil. Figure 4.21 shows the state transition diagram which depicts the

security risk. In this figure, the arrow to the left of the states represents a bypass

opportunity for a malicious user to circumvent the intended activation requirements

of state two. By circumventing the activation requirements, as stated previously,

this allows for the inadvertent triggering, or refusal to trigger, the activation rung.

Figure 4.22 shows the state transition diagram which depicts the correct process flow

in which the hidden jumper is removed.

Figure 4.21: State Transition Diagram: Hidden Jumper Risk
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Figure 4.22: State Transition Diagram: Hidden Jumper Risk Eliminated

4.5.6 State Transition Diagram Analysis: Duplicate Object

Inserted

Duplicate objects in ladder logic will have one of two detrimental affects on the

process: 1) the duplicate object will cause the related contact to never trigger and 2)

the duplicate object may cause the system to misfire the contact and start the related

rung on an unintended time line. Figure 4.23 shows the state transition diagram which

depicts the security risk described in (1) above. In this figure, duplicate trigger coils

are found which could be paired with the contact in question, therefore the contact

is never triggered and leads to a dead state with each coil. The correct process flow

for this duplicate object example is the same as previously shown in Figure 4.18.
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Figure 4.23: State Transition Diagram: Duplicate Object Inserted Risk

We use the state transition models of the PLC code vulnerabilities to evaluate

actual PLC code and detect vulnerabilities in this code. We describe our static

analysis approach in Chapter 6.
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Chapter 5

Supporting Correct Software Development

After the detection and ranking of the vulnerabilities, we provide guidance to the

developer to remove the vulnerabilities. For this, we have developed a set of design

patterns supporting targeted best practice guidelines for the ladder logic software

developer.

It is our intention to guide the developer through the process of eliminating these

vulnerabilities. The design patterns will support both novice and experienced users,

enabling them to improve their coding [7, 14, 22]. Design patterns have been used

successfully for various applications. We apply the same principles in the context of

ladder logic. Our goal is to keep these design patterns vendor neutral, not targeting

specific industry types or PLC manufacturers. This will allow the adaptation of our

approach by all PLC developers.

Section 5.1 gives examples of design patterns for mitigating the various classes

and subclasses of the Vulnerability Taxonomy. Section 5.2 discuses the methodology

used in the selection of a design pattern (or patterns) to mitigate the software vul-

nerabilities found. The methodology, which is incorporated into the Static Analysis

Tool, allows for the assessment and mitigation of multiple areas within the same rung

of logic or multiple rungs of logic. The combination of the design patterns and miti-

gation methodologies, as created, allow for a greater depth and breath in the overall

application of the Static Analysis Tool.
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5.1 PLC Security Design Patterns

The following are examples of vulnerability entry points within ladder logic code. We

represent the vulnerabilities as a vulnerability pattern. Figure 5.1 shows the rela-

tionships between the design patterns associated with the classes of the vulnerability

taxonomy.

Figure 5.1: Design Pattern Relationships

PLC ladder logic is comprised of multiple switching techniques such as normally

open and normally closed switches, timer functions, boolean functions, math routines,

branch circuits and jump to subroutine functions. Improper use of these sub-areas

have the ability to introduce security risks. Design patterns will be used to give a

solution to each specific type of error / security risk outlined in the Vulnerability

Taxonomy. We also present the overall connection of the individual patterns. The
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Design Pattern Engine, which is incorporated into the Static Analysis Tool, uses

information received from the Vulnerability Engine to determine the vulnerability

assessed and assign the necessary design pattern to mitigate the vulnerability. The

ladder logic code, that has been successfully compiled by the ladder logic compiler,

must be loaded into the Static Analysis Tool manually for validation and verification.

In the following sections, we present design patterns to address specific software

vulnerabilities. We begin each section with a tabular overview of the problem, the

recommended solution and the application of the pattern. The detailed discussion

of the pattern follows the table and incorporates a specific example to illustrate the

vulnerability as well as the design pattern.

5.1.1 Logic Errors

The classification of logic errors can be split into two sub-classes: 1). Placement

and Element Component Errors and 2). Scope and Linkage Errors. These two

classifications represent the breath of logic errors encountered within PLC ladder

logic code.

Logic errors, if allowed to clear the the design process at compile time, at a

minimum introduce reliability issues, but to a greater extent allow for the introduction

of security risks. Placement and element component errors can further broken down

into the following sub-categories:

• Beginning of rung functions

– Normally open and normally closed contacts

– Comparative functions

• End of rung functions

– Output Enable
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– Timer functions

– Counter functions

– Program flow instructions

– Mathematical functions

– Data handling functions

Scope and linkage errors have no sub-classes but specifically represent the follow-

ing components:

• Jump to subroutine

• Jump

• Label

• Return

The class of logic errors and its sub-classes represent the most common functions

and components encountered while writing PLC ladder logic code. As such, these

components and functions are the most likely targets of malicious users. This is due

both to their high level of availability within the system as well as their potential for

crossover between types of platforms, which will allow the malicious user to have a

more general knowledge of PLC ladder logic but still accomplish the same goal. We

will now show design patterns for sub-classes and components in each of these areas.
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5.1.1.1 Placement and Element Component Errors

Table 5.1: Pattern: Comparative Functions Miscoded

Classification Placement and Element Component Errors
Sub-Class Beginning of the Rung Elements
Instance Comparative Functions
Problem Comparative functions within the PLC lad-

der logic code, if miscoded, can cause security
issues in the form of ladder logic misfiring or
availability for numerical data manipulation.
This value, by not being driven through a
data table location, is considered open and
unprotected.

Solution If the Vulnerability Engine detects a hard-
coded value within a comparative function,
the user will be required to redirect this value
through the data table.

Application By requiring that the user redirect a hard-
coded value through the PLC data table, this
will add another level of complexity , and
therefore security to the PLC ladder logic.

Impacts The impact of this solution is in the removal
of the vulnerabilities ranging from severity
levels A - D.

Table 5.1 shows the instance of comparative functions. As shown, a comparative

function is part of the Beginning of Rung Elements sub-classification, which,

subsequently, is part of the Placement and Component Errors classification. The

table is broken down into the following categories: problem, solution, application and

impact. Each of these will now be explained in greater detail.
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Problem

As stated, PLC ladder logic elements such as comparators, if miscoded, can allow for

the implementation of security issues such as misfiring or numerical data manipula-

tion.

For example:

Assume the following:

• In a given ladder logic sequence, a normally open contact is supposed to trigger

the initialization of a high pressure boiler.

• There is a comparative function that states that as long as integer ’A’ is less

than ’B’ then the heating process will continue with no interruption.

If the comparative sequence is coded such that comparative element ’B’ is hard

coded with a numerical value (as opposed to referencing a data table location), this

allows for a security entry point into the system by allowing this hard coded number

to be changed directly in the component itself. Figure 5.2 shows the vulnerability

pattern and Figure 5.3 shows the ladder logic equivalent.

Figure 5.2: Pattern: Hard Coded Value Vulnerability
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Figure 5.3: Comparator with Hard Coded Element

Solution

If the Vulnerability Engine detects that there is a comparative function in the ladder

logic, it will note the occurrence and require that the user verify that each element

of the comparative function points to a location in the PLC data tables. Figure 5.4

shows the design pattern and Figure 5.5 shows the ladder logic equivalent.

Figure 5.4: Pattern: Elimination of Hardcoded Value Vulnerability
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Figure 5.5: Compartor with Data Table Directed Elements

Application

In the example shown, the Design Pattern Engine will be used to provide descriptive

input, in the form of noting the occurrence and requiring the solution described.

This solution should also be placed in the best practices guide for future reference

and training and development purposes.

Impacts

The impact of this solution is in the use of the tables themselves as the defense

mechanism, ensuring that no hard coded value can violate the intended functionality.
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Table 5.2: Pattern: Trigger Bit Missing

Classification Placement and Element Component Errors
Sub-Class Beginning of the Rung Elements
Instance Normally Closed Contacts, Normally Open

Contacts
Problem Normally open and normally closed contacts

are the backbone of all PLC code, regard-
less of manufacturer or type. These con-
tacts are the integration point between every
other type of functional component within
the PLC ladder logic code. If one of these
contacts (triggers) is installed without a cor-
responding trigger coil, then the desired out-
come of the rung in which the contact exists
will never occur.

Solution Each contact withing the ladder logic code
is compared against the available set of out-
puts currently available. If no trigger coil
exists, or more than one, then the Vulnera-
bility Engine would announce the vulnerabil-
ity and direct the user to the contact that is
currently lacking a trigger mechanism.

Application By assuring that each end of rung element,
which affects other like named bits, has a
corresponding trigger bit association, we al-
leviate the scenario which would allow an at-
tacker to place a random trigger within the
code due to lack of a matching pair.

Impacts The impact of this solution is in the removal
of the vulnerabilities ranging from severity
levels A - C.

Table 5.2 shows the instances of normally open and normally closed con-

tacts. As shown, normally open and normally closed contacts are part of the Be-

ginning of Rung Elements sub-classification, which, subsequently, is part of the

Placement and Component Errors classification.
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Problem

As stated, the normally open and normally closed contacts are the integration point

between every other type of functional component within the ladder logic code. These

root level components are necessary for every type of rung that may be created.

However, these contacts are only functional, above and beyond their initial state, if a

triggering mechanism exists which would allow for a change of their state condition

to occur.

For example:

Assume the following:

• In a given ladder logic sequence, an output enable (O:3/4) is supposed to trigger

the initialization of an emergency shutdown procedure.

• The fault routine has a normally open contact (O:3/4) associated with the

output enable which would trigger the beginning of the emergency shutdown

procedure (O:3/5).

• The output enable component (O:3/4) that would trigger this event has been

left out, or removed from, the ladder logic code.

This scenario will yield one of two end results to occur:

• The emergency shutdown procedure would be continually activated, due to

a lack of a triggering mechanism (in the case of a normally closed contact

insertion).

• The emergency shutdown procedure would never activate, due to a lack of a

triggering mechanism (in the case of a normally open contact).

Figure 5.6 shows the vulnerability pattern and Figure 5.7 shows the ladder logic

equivalent.
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Figure 5.6: Pattern: Missing Trigger Bit Vulnerability

Figure 5.7: Missing Trigger Bit Ladder Logic
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Solution

As stated, the Static Analysis Tool will determine if at least one associated contact

exists for each trigger coil. If an association doesn’t exist, the user is instructed to

add the necessary contact to the ladder logic file, in its correct location, or to delete

the trigger coil mechanism. An example will be shown to the user, through the Static

Analysis Tool as to the intent of the correction. Figure 5.8 shows the design pattern

and Figure 5.9 shows the ladder logic equivalent.

Figure 5.8: Pattern: Elimination of Missing Trigger Bit Vulnerability
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Figure 5.9: Missing Trigger Bit Corrected

Application

In the example shown, the Design Pattern Engine will be used to provide descriptive

input, in the form of noting the occurrence and suggesting a placement solution. This

will be a suggested placement by way of example, based on the intent of the coil in

question. The correct placement location would only be known by the developer.

Impacts

The impact of this solution is in assuring that at one software trigger coil is inserted for

every software based contact, preventing potentially catastrophic occurrences ranging

from severity levels A - D.
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Table 5.3: Pattern: Timer Race Condition

Classification Placement and Element Component Errors
Sub-Class Beginning of the Rung Elements
Instance Normally Closed Contacts, Normally Open

Contacts (Timer Done Bits)
Problem Incorrect placement of a timer done bit el-

ement can cause the process involving the
timer done bit and the timer itself to go into
a race condition.

Solution As a timer is encountered in a ladder logic
rung, the timer done bit will be paired with
that timer and a determination will be made
as to the correctness of the current place-
ment. This will be accomplished with the
Design Pattern Engine of the Static Analysis
Tool.

Application The Vulnerability Engine, upon determin-
ing that a race condition exists between the
timer contact and its triggering function, will
relay that information to the Static Analysis
Tool. The Static Analysis Tool will use the
Design Pattern Engine to suggest a corrected
outcome to eliminate the race condition.

Impacts The impact of this solution is in the removal
of the vulnerabilities ranging from severity
levels A - D.

Table 5.3 shows the instances of normally open and normally closed contacts

(timer done bits). As shown, normally open and normally closed contacts are part

of the Beginning of Rung Elements sub-classification, which, subsequently, is part

of the Placement and Component Errors classification.

Problem

As stated, the normally open and normally closed contacts which are used to create

timer done bits such as T4:0/DN, if not properly placed, can cause a race condition

to occur. This race condition occurs when the timer done bit becomes a required
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element in activating its own triggering mechanism. This would cause a continual

oscillation between the active and inactive states of the element in question, thus

causing a race condition scenario. Currently, the compiler would allow the ladder

logic to be compiled and the continual oscillation of the on/off state, as described

above, to occur. Furthermore, this could lead to consequences such as improper event

sequencing in a fault routine, or the inability of a process to shut down. An example

of this scenario was shown in Chapter 4, Figure 4.11. The vulnerability pattern for

the race condition is shown in Figure 5.10.

Figure 5.10: Timer Race Condition Vulnerability

Solution

As stated, the Static Analysis Tool, upon determining the existence of the race con-

dition, will alert the developer of the potential security risk and suggest corrective

measures. The best correct measure in this scenario is that of moving the timer

time bit in such a position that it is not a direct contributor to its own triggering

mechanism. Figure 5.11 shows the associated design pattern for the race condition.
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Figure 5.11: Pattern: Timer Race Condition

Application

In the example shown, the Static Analysis Tool will use the Vulnerability Engine in

making the determination of the existence of the vulnerability. The Design Pattern

Engine will then be used to suggest the correct procedure to follow to alleviate the

error and possible security risk.

Impacts

The impact of this solution is the correction of the race condition by using correct

placement of components throughout each rung of logic. By alleviating the race

condition, this could avert failures in the sequencing of alarm and shutdown processes.
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5.1.1.2 Scope and Linkage Errors

Table 5.4: Pattern: Scope and Linkage Errors

Classification Scope and Linkage Errors
Sub-Class N/A
Instance Jump to Subroutine (JSR), Jump (JMP), Label (LBL),

Return (RTN)
Problem Missing or miscoded jump to subroutine (JSR) functions

introduce a security risk which could allow a malicious
user to introduce an unintended subroutine. In the case
of a missing JSR, the JSR could be inserted and a non-
intended location referenced. Whereas, in the case of
a miscoded JSR, the unintended subroutine could be
introduced using the location currently pointed to by
the JSR.

Solution To detect a missing JSR function, it is necessary to de-
termine the number of files available and then query the
location that each existing JSR is directed toward. The
Static Analysis Tool can detect the number of possible
files that exist and then track the pointer locations of
each JSR. If a file exists that has no JSR pointing to
that file, then the file is currently non-functional and
should be removed from the PLC CPU.

Application By removing the file in question from the PLC CPU, a
possible entry point for a man in the middle attack is
averted. If this file is necessary for a future use applica-
tion, this file can be saved to a removable storage device
such as a disk or EEPROM card.

Impacts The impact of this solution is in the removal of the vul-
nerabilities ranging from severity levels A - D.

Table 5.4 shows the instances of Jump to Subroutine (JSR), Jump (JMP),

Label (LBL) and Return (RTN). As shown, these instances are part of the

Scope and Linkage Errors classification.
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Problem

A miscoded JSR function points to an unintended location and could introduce func-

tionality, or data to the system, that is unintended. A JSR function is required to

jump to a new file location, but upon reaching the end of that file, the jumper auto-

matically returns to the line following the JSR as if nothing has occurred. A missing

or miscoded jump to subroutine (JSR) function introduces a security risk which could

allow a malicious user to introduce an unintended subroutine. In the case of a missing

JSR, the JSR could be inserted and a non-intended location referenced. Whereas,

in the case of a miscoded JSR, the unintended subroutine could be introduced using

the location currently pointed to by the JSR. This type of security risk is similar to

a man in the middle attack.

For example:

Assume that a process reacts differently depending on various environmental fac-

tors such as varying degrees of temperature.

In the spring and summer months a process may function based on a ladder logic

subroutine that is tempered for high levels of heat. In the fall and winter months the

same process may have been coded to take into consideration freezing temperatures.

To ensure that the ladder logic developer doesn’t have to re-write the code each

time that there are these environmental issues, most likely two subroutines are writ-

ten, and one is pointed to based on seasonal changes. This means that each of the

subroutines are most likely stored on the same processor throughout the year. This

allows for an extra location for a JSR function to point toward at any given time.

This is critical in that if this file is first modified and then the pointer redirected, then

the new data would be used. Again, very similar in principal to a man in the middle

attack. Figure 5.12 shows the vulnerability pattern and Figure 5.13 shows the ladder

logic equivalent.
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Figure 5.12: Pattern: JSR Vulnerability

Figure 5.13: JSR Man in the Middle Attack
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Solution

The Static Analysis Tool uses a two prong approach in determining the existence of

the JSR vulnerability. First, the existence condition is checked to verify that a file

exists which correlates to the JSR function. Once it is determined that a file does

exist which correlates to the JSR function, the file is then verified to be non-empty.

Figure 5.14 shows the design pattern and Figure 5.15 show the ladder logic equivalent.

Figure 5.14: Pattern: Elimination of Incorrect JSR
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Figure 5.15: PLC Code After Elimination of Security Risk

Application

In the example shown, the Design Pattern Engine will be used to provide the two

prong solution to the JSR vulnerability. The user will be instructed to insert the

appropriate file being referenced and to ensure that the file is non-empty.

Impacts

As noted in the example, a common usage of the JSR routine is to jump between

various functional needs in a given process without the need to add and subtract

code as the process needs change. The greatest impact that will be a direct result of

the application of our Static Analysis Tool will be the need to store the excess files
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in a location separate from the PLC CPU. Although we recognize that there may

be an additional security risk in having this information on transportable media,

this security concern can be alleviated by keeping the removable storage in a locked

cabinet, for example. The removable media risk is not nearly as great as the online

attack risk which could occur, as it requires physical access to the facility in question.

5.1.2 Duplicate Objects Installed

Table 5.5: Pattern: Duplicate Objects Installed

Classification Software Based Errors
Sub-Class Duplicate Objects Installed
Instance Timers, Counters, Output Enable, JSR
Problem Ladder logic code requires a one to many relationship

between potential output (trigger functions) and the el-
ements that they trigger. If there become a many to
many relationship between these two components, then
the security risks which exist are in the areas of poten-
tial misfiring of the ladder logic code affected, or denial
of access by either trigger mechanism.

Solution The Vulnerability Engine of the Static Analysis Tool will
determine the existence of more than one trigger mech-
anism within a complete set of PLC ladder logic code.
If duplicate triggers are found, the developer is alerted
to the existence of the multiple triggering elements and
forced to eliminate all but one of these occurrences.

Application Utilizing the Static Analysis Tool, if duplicate triggers
are found, the developer is alerted to the existence of
the multiple triggering elements and forced to eliminate
all but one of these occurrences.

Impacts The impact of this solution is in the removal of the vul-
nerabilities ranging from severity levels A - D.

Table 5.5 shows the instances of Timers, Counters, Output Enable and JSR. As

shown, these instances are part of theDuplicate Objects Installed sub-classification,

which, subsequently, is part of the Software Based Errors classification.
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Problem

As stated, the relationship between a triggering function and the elements (contacts)

that are triggered, must be a one to one or one to many relationship. Figure 5.16

shows this relationship constraint.

Figure 5.16: Trigger Function to Element Relationship

For example:

Assume that contact O:3/0 is designed such that once it is triggered, it would

begin the shutdown process on a high pressure boiler. The output associated with

this process is O:3/4.

Further assume that within the complete set of ladder logic files which run this

process, there has been a duplicate trigger point installed attempting to trigger O:3/4.

This scenario has the potential to cause a two fold security risk, if the malicious

user installs a dual trigger as described.

• The identical trigger, depending on multiple factors such as ladder logic process

rate, may trigger the O:3/0 prematurely or later than intended.

• With two identical trigger mechanisms installed, it is also possible that the

processor would find itself at an impasse and fail to instantiate either trigger

mechanism, therefore failing to shutdown the high pressure boiler as required.

Figure 5.17 shows the vulnerability pattern of duplicate objects installed.
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Figure 5.17: Pattern: Duplicate Objects Installed Vulnerability

Solution

The Static Analysis Tool will be used in determining the existence of duplicate objects

installed within a PLC ladder logic file. Each time that a non-duplicatable element

is found within the PLC ladder logic code, it is compared against like items in the

remainder of the code. If a duplicate item is found, the Static Analysis Tool with

present the user with the correct design pattern and require that they remove one

of the offending duplicate objects. Figure 5.18 shows the correct duplicate object

installed design pattern.

Figure 5.18: Pattern: Elimination of Duplicate Objects
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Application

In the example shown, the Design Pattern Engine will be used to enforce the one to

one or one to many relationship necessary for the elimination of this security risk.

Impacts

The impact of this solution is in the enforcement of the relationship rules. This

enforcement will require that the developer fully understand the various relationships

that must be in place which are currently not addressed by the existing compilers.

The enforcement of having exactly one trigger coil per like numbered contact will

eliminate misfires and freezing of the ladder logic process.
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5.1.3 Unused Objects

Table 5.6: Pattern: Unused Objects Instantiated

Classification Software Based Errors
Sub-Class Unused Objects
Instance Any input or output function
Problem When initially developing ladder logic code, the de-

veloper may choose instantiate more variable locations
within the data table than is necessary. These unused
components, if determined by the attacker, can be used
more expeditiously than non-instantiated variables. If a
variable already exists, then the effort required to attack
the system is already decreased.

Solution The Vulnerability Engine of the Static Analysis Tool, as
currently developed, will use the vulnerability pattern
related to placement and element component errors to
determine the existence of unused objects. The related
design pattern will be extended to include the required
elimination of these objects by the developer prior to
uploading the ladder logic to the PLC CPU.

Application By using the vulnerability pattern related to placement
and element component errors to recognize the existence
of the error (Figure 5.6), and extending the current re-
lated design pattern (Figure 5.8), we eliminate this se-
curity risk.

Impacts The impact of this solution is in the removal of the vul-
nerabilities ranging from severity levels A - D.

The instance classification of Table 5.6 generally refers to any input or output func-

tion, as unused objects can occur within any function. As shown, unused objects are

part of the Software Based Errors classification.
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Problem

Pre-instantiated objects within ladder logic code potentially opens multiple paths

into the system itself. If an object is already pre-instantiated, and this knowledge

becomes available to the attacker, then they are required to perform one less step in

terms of breaching security within the system.

Slightly reworking the missing trigger coil example from above:

Assume the following:

• In a given ladder logic sequence, an output enable (O:3/4) is supposed to trigger

the initialization of an emergency shutdown procedure.

• The fault routine has a normally open contact (O:3/4) associated with the

output enable which would trigger the beginning of the emergency shutdown

procedure (O:3/5).

• An attacker hopes to block the emergency shutdown process using a binary

contact. The though process for using this contact is that it is easily disguised,

as it is internal (not a hardware I/O point) and located within many other

contact points.

• When instantiating the initial data point objects for the PLC ladder logic cre-

ation, the developer decided to add 32 binary points for current and future use

(B3:0/0 - B3:0/31).

• The attacker floods the binary table with an array of 1’s. Any of these values

that remain unchanged in the table alert the attacker to a possible unused point

for his attack.

• The attacker determines that B3:0/17 is an unused point and places a normally

open contact for this location into the ladder logic code described.
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• As this is an unused object, there is no trigger coil to alter the state of this

contact, and the attacker will have successfully blocked the emergency shutdown

process, prior to performing an attack on the system.

Figure 5.19 shows the vulnerability pattern and Figure 5.20 shows the ladder logic

equivalent.

Figure 5.19: Pattern: Unused Objects Installed Vulnerability

Figure 5.20: Blocking Contact Inserted
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Solution

As stated, the Static Analysis Tool used the placement and element component vul-

nerability and the Static Analysis Tool extended the functionality of the placement

and element component design pattern. This allows the system to determine the exis-

tence of unused objects without requiring that the data table elements are processed

directly by the Static Analysis Tool. Figure 5.21 shows the design pattern.

Figure 5.21: Pattern: Elimination of Unused Objects

Application

As in the example shown, the Design Pattern Engine will be used to enforce the

requirement of elimination of all unused objects.

Impacts

Through the elimination of unused objects, the static analysis tool will only allow the

developer to instantiate objects that are functional within the ladder logic at compile

time. By eliminating unused objects, the available ladder logic elements which could

be used for malicious intent would have to be instantiated by the attacker, which

would possibly require an advanced knowledge of the system.
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5.1.4 Hidden Jumpers

Table 5.7: Pattern: Hidden Software Jumpers

Classification Software Based Errors
Sub-Class Hidden Jumpers
Instance Force routines or software jumpers installed (branch rou-

tines)
Problem PLC ladder logic has the ability to introduce software

bypass routines known as hidden jumpers, which current
compilers do not reject before the program is uploaded
to the CPU.

Solution The Vulnerability Engine of the Static Analysis Tool will
determine if hidden jumpers exist, either in the form of
forces or blank sub-rungs.

Application If the Static Analysis Tool detects the existence of hid-
den jumpers the user will be alerted and instructed to
remove the vulnerability prior to the ladder logic being
uploaded to the PLC CPU.

Impacts The impact of this solution is in the removal of the vul-
nerabilities ranging from severity levels A - D.

Table 5.7 shows the instances of force routines or software jumpers installed

(branch routines). As shown, force routines or branch routines are part of the

Hidden Jumpers sub-classification, which, subsequently, is part of the Software

Based Errors classification.

Problem

A software force or software jumper, in the form of a blank sub-rung, introduces the

security risk of allowing any part, or parts, of the PLC ladder logic to be bypassed

or overridden. These hidden jumpers are intended to be force routines for testing

purposes and branch routines for multiple OR functionality within the ladder logic

itself, when not left as blank sub-rungs.
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For example:

Assume that some input (I:2/1) causes the activation of a process output (O:3/3).

Further assume that their exists a function (LEQ A, B) that implies that the data

associated with the variable A must be less than the data associated with the variable

B. Building on our design pattern involving hard coded values (Figure 5.4), assume

that the attacker has tried, and failed, to override the current values in the LEQ

command. The attacker may choose to insert a software jumper to bypass the LEQ

command and therefore activate the next process prematurely. Figure 5.22 shows the

vulnerability pattern and Figure 5.23 shows the ladder logic equivalent.

Figure 5.22: Pattern: Hidden Jumper Installed Vulnerability
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Figure 5.23: Software Jumper Installed

Solution

The Static Analysis Tool, upon detection of the vulnerability, would alert the devel-

oper of the existence of the hidden jumpers, require the enforcement of the elimina-

tion of all types of hidden jumper and negate the vulnerability. Figure 5.24 shows

the vulnerability pattern and Figure 5.25 shows the ladder logic equivalent.
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Figure 5.24: Pattern: Elimination of Hidden Jumpers

Figure 5.25: Elimination of Software Jumper
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Application

The Vulnerability Engine of the Static Analysis Tool detects the existence of any type

of hidden jumper. The static analysis tool would need to go a step further to properly

negate this vulnerability, by being active on the PLC CPU and continuously reviewing

live ladder logic. This would allow for the Static Analysis Tool to be configured such

that it could differentiate between forces in test mode and forces installed in live code.

Impacts

As described, hidden jumpers can be software forces or blank sub-rungs located within

the programming structure of the ladder logic code. Forces, as they are called, are

sometimes used as a testing and troubleshooting tool before and during the commis-

sioning of the system utilizing the PLC and the ladder logic. Forces are not intended

to remain active in ’live’ code. The design pattern would require the enforcement of

the rule banning forces and blank sub-rungs from live code.

5.2 Selection of Design Patterns to Mitigate Soft-
ware Vulnerabilities

We associate each vulnerability with one or more design patterns. In this section we

address the need to select the appropriate design patterns to mitigate the detected

problem. We denote the set of design patterns associated with the vulnerability in V

as P , such that the application of a pattern in P on the ladder logic code will remove

V.

Given ladder logic code L and the set of detected vulnerabilities, we propose a

minimal and complete set of design patterns. We say that P is complete with respect

to a set of vulnerabilities V if for every vulnerability vi ∈ V there is a pattern pi ∈
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P such that pi mitigates vi. We say that P is minimal with respect to a set of

vulnerabilities V if there is no pattern pi ∈ P such that P −{pi} would still mitigate

all vulnerabilities in V.

The security Static Analysis Tool may reach one of two outcomes: No security

vulnerability or Compiled with a Possible Vulnerability Existence.

• No Security Vulnerability. The proposed code has been completely tested using

the PLC-SF set of tools and has been determined to be error free.

• Compiled with a Possible Vulnerability Existence. After using the PLC-SF set

of tools, the compiler would warn of a possible coding issue that may result in

a security concern. The severity level of the concern would be noted as well.

98



www.manaraa.com

Chapter 6

Static Analysis Tool

6.1 Overview of the Static Analysis Tool

We have implemented a security static analysis tool that detects PLC code vulner-

abilities and recommends mitigation strategies. It uses the vulnerability taxonomy

(Figures 4.2 - 4.10) the severity chart ratings (Table 4.1), and state-transition models

to detect PLC vulnerabilities in the PLC code. Each Vulnerability is cross referenced

with the design pattern that mitigates the vulnerability. The static analysis tool, in

relation to the PLC-SF framework, uses the following as input:

• Ladder logic from an existing PLC program

• The PLC code Vulnerability Taxonomy

• State Transition diagrams for the vulnerabilities

• A list of Design Patterns

• The Severity Chart

Figure 6.1 shows the current work flow of a PLC compiler. As noted, the dashed

area represents the insertion of our Static Analysis Tool into this process.
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Figure 6.1: PLC Compiler Work Flow with Static Analysis Tool

6.1.1 PLC Code Vulnerability Taxonomy

The Vulnerability Taxonomy is the basis behind which the Taxonomy Engine is cre-

ated. The Taxonomy Engine uses state transition diagrams as a bridge between the

Vulnerability Taxonomy and the Taxonomy Engine itself. With each vulnerability

documented in the Vulnerability Taxonomy, a state transition diagram is created to

represent that vulnerability. The Taxonomy Engine evaluates the input PLC code

by building the stages in the state transition diagrams. If an error is detected the

Taxonomy Engine passes the vulnerability information to the design pattern engine

and the severity engine.

6.1.2 Matching Design Patterns

In Section 4.5 we mapped the corrective actions with state transition diagrams. These

corrective actions are converted to design patterns. The design patterns are intended

to provide the user with a proven solution to mitigate the vulnerability. The design

pattern engine uses the vulnerability information from the Taxonomy Engine to match

corrective actions (design patterns) for each detected vulnerability.
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6.1.3 The Severity Chart

The Severity Chart, which is shown in Chapter 4 serves as the initial ranking mech-

anism of each of the vulnerabilities. Vulnerabilities are evaluated based on their

potential impact considering novice or malicious users. The aim of our ranking is

that developers can address the most critical problems.

6.1.4 Static Analysis Tool Output

The Static Analysis Tool produces the following output:

• List of Vulnerabilities and their Ranking

• Associated Design Patterns

• Suggested Solution

This level of output, once presented to the user, should provide a basis to make

a sound decision to substantiate, as well as mitigate, the security risk determined by

the vulnerability engine.

6.2 Static Analysis Tool Implementation Exam-
ples

We have implemented a proof of concept static analysis tool. The tool is run-

ning on the Windows 7 platform and was coded in C#. In the following we provide

screen-shots of the tool evaluating PLC code containing the vulnerabilities we have

studied.
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6.2.1 Determination of Race Condition

Explanation of Analysis:

Figure 5.10 depicted the vulnerability created if the trigger bit for a timer element

is located such that it becomes a condition for its own state transition. This would

cause a continual oscillation between the active and inactive states of the element

in question, thus causing a race condition scenario. Current compilers would allow

the ladder logic to be compiled and the race condition would allow for the continual

oscillation of the on/off state, as described above, to occur. Initially, the Vulnerability

Engine would determine the existence of this vulnerability. Once the vulnerability is

determined, the code is then compared against the severity chart, which ranks the

current potential error as to the level of security risk that would be created if no

action is taken. Once the vulnerability is determined and the severity assigned the

Design Pattern Engine is used to determine the best course of action to mitigate the

vulnerability. Figure 5.11 shows the proposed design pattern that would be suggested

by the Static Analysis Tool. Using figure 6.2, we will now look at the race condition

scenario in more detail.
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Figure 6.2: Timer Race Condition (Ladder Logic Example)

As each element is added to the specific rung of code, it is compared to the software

vulnerability taxonomy to determine if a flag is necessary as processing continues.

Note an example of this in line of 5 of this figure. The TON/DN bit is flagged and

placed on a ’watch’ condition as the remainder of the code is processed. This flag is

based on the insertion of the TON/DN bit and its intended function as it relates to

the remainder of the rung. At this point, the Static Analysis Tool is uncertain as to

the remainder of the rung, so the flag becomes necessary as a cross check mechanism.
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Once the OR statement is placed, the Static Analysis Tool checks the current flagged

elements against both sides of the OR statement, as well as setting any new flags

which may be necessary. As denoted in line 5 (circled region) of this figure, clearly

there is a potential race condition between the TON/DN bit used to activate the

timer, and the TON (timer coil element) which is used to activate the TON/DN bit.

The software vulnerability taxonomy would denote this error as a Beginning of

Rung Function subclass which is a subset of the Placement and Element Com-

ponent Errors subclass, which in turn is a subset of the Logic Errors classification.

Once the error has been determined with the Vulnerability Taxonomy and a severity

level assigned by the Severity Engine, the correct design pattern would be determined

and applied by the Design Pattern Engine. As stated, the correct design pattern for

this scenario Figure 5.11. Using the suggestion determined by the design pattern,

the timer bit would be recommended to be placed inside of the latch. Each of the

processes described would continue until a probable solution for each vulnerability is

determined. This solution would be noted by the compiler and a flag would be set to

alert the developer so that corrective action is taken. Once the error is determined

and the probable correction noted, the error and this be cataloged. Each cataloged

entry would contain information such as the type of error, time and date of error,

number of times this type of error has been generated and the severity level of the

error itself. This information could then be used not only to solve the immediate

occurrence, but also provide a means to begin the development of a best practices

guide. The best practices guide could then be continually updated and used as a

training tool for new PLC programmers, as well as a design tool for experienced pro-

grammers, which would allow them to begin coding toward known, and perceived,

security risks.
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Screen shots for race condition error:

Figure 6.3 shows the Static Analysis Tool upon initialization. The user will be

prompted to browse for the PLC ladder logic code file that they need to have verified

and validated.

Figure 6.3: Static Analysis Tool: Initialization

Once the file is loaded, as shown in Figure 6.4, the user will select the validate

button, and validation process will begin.
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Figure 6.4: Static Analysis Tool: Race Condition Error

After the validation process is completed, the user will be given the following

information as shown in Figure 6.5: the design vulnerabilities found, severity rating

given, vulnerability pattern, associated design pattern and suggested PLC ladder

logic modification.
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Figure 6.5: Static Analysis Tool: Mitigation of the Race Condition Error

6.2.2 Determination of Missing Trigger Coil

Explanation of Analysis:

Figure 5.6 depicted the vulnerability created if the required trigger bit to continue

the execution of a process is non-existent. If the trigger bit (coil) is missing from the

ladder logic then the individual contact that requires this bit for change of state

purposes would become non-functional. Current compilers would allow the ladder

logic to be compiled as written. As previously stated for the race condition example,

the Vulnerability Engine would determine the existence of this vulnerability. Once

the vulnerability is determined, the code is then compared against the severity chart,

which ranks the current potential error as to the level of security risk that would be

created if no action is taken. Once the vulnerability is determined and the severity

assigned the Design Pattern Engine is used to determine the best course of action to

mitigate the vulnerability. Figure 5.8 shows the proposed design pattern that would
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be suggested by the Static Analysis Tool. Using figure 6.6, we will now look at the

missing trigger bit scenario in more detail. This figure depicts three rungs of ladder

logic code. Each rung is comprised of normally open and normally closed contacts as

well as output coils. The normally open contacts such as I:x/y need no trigger coils,

as these are directly triggered by hardwired input devices as the ’I’ indicates. One

the third rung, note that contact O:4/7 is circled. This contact, as it is triggered

by an output coil, as denoted by the ’O’ has the potential to be missing its trigger

coil. Therefore, a flag is set at this point until which time that the matching trigger

is located. The matching trigger coil is not found after the remainder of the ladder

logic has been scanned, therefore a vulnerability has been determined. The software

vulnerability taxonomy would denote this error as a End of Rung Function subclass

which is a subset of the Placement and Element Component Errors subclass,

which in turn is a subset of the Logic Errors classification. Once the error has been

determined with the Vulnerability Taxonomy and a severity level assigned by the

Severity Engine, the correct design pattern would be determined and applied by the

Design Pattern Engine. As stated, the correct design pattern for this scenario Figure

5.8. Using the suggestion determined by the design pattern, the missing trigger bit

would be noted and the developer notified to insert the coil where required.

108



www.manaraa.com

Figure 6.6: Missing Trigger Bit (Ladder Logic Example)
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Screen shots for missing trigger bit error:

Figure 6.7: Static Analysis Tool: Missing Trigger Bit Error
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Figure 6.8: Static Analysis Tool: Mitigation of the Missing Trigger Bit Error

6.2.3 Determination of Hidden Jumpers

Explanation of Analysis:

Figure 5.22 depicted the vulnerability created if the required trigger bit to continue

the execution of a process is non-existent. If a software jumper were intentionally

or unintentionally installed, this would introduce the existence of a bypass condition

on a single, or multiple elements, within a given rung of ladder logic code. Current

compilers would allow the ladder logic to be compiled as written. As previously

stated for the race condition example, the Vulnerability Engine would determine the

existence of this vulnerability. Once the vulnerability is determined, the code is

then compared against the severity chart, which ranks the current potential error as

to the level of security risk that would be created if no action is taken. Once the

vulnerability is determined and the severity assigned the Design Pattern Engine is

used to determine the best course of action to mitigate the vulnerability. Figure 5.24
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shows the proposed design pattern that would be suggested by the Static Analysis

Tool. Using figure 6.9, we will now look at the hidden jumper inserted scenario in more

detail. This figure depicts two rungs of ladder logic code. Each rung is comprised of

normally open and normally closed contacts as well as output coils. This example also

shows the presence of a ’OR’ circuit in the form of a branch rung. The ladder logic

code is accepted token by token and once the presence of the ’Branch’ statement is

found, a flag is set until the existence or non-existence of a contact within the branch

circuit. In the following line, an ’End Branch’ command is encountered before a

contact was detected. Therefore the software vulnerability taxonomy would denote

this error as a Rung Jumper subclass which is a subset of the Hidden Jumpers

classification. Once the error has been determined with the Vulnerability Taxonomy

and a severity level assigned by the Severity Engine, the correct design pattern would

be determined and applied by the Design Pattern Engine. As stated, the correct

design pattern for this scenario Figure 5.24. Using the suggestion determined by the

design pattern, the rung jumper (branch) would be removed.
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Figure 6.9: Hidden Jumper (Ladder Logic Example)
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Screen shots for hidden jumper error:

Figure 6.10: Static Analysis Tool: Hidden Jumper Error

Figure 6.11: Static Analysis Tool: Mitigation of the Hidden Jumper Error
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Chapter 7

Conclusions and Future Research

The area of Supervisory Control and Data Acquisition System (SCADA) protection

is currently being studied by multiple parties. However, the security vulnerabilities

associated with Programmable Logic Controllers (PLC) are a relatively new area of

SCADA security research. The SCADA system depends on the data and control

supplied by the PLC’s. Our research has allowed us to look at the data acquisition

system from not only the initial gathering point of the data, but also through the

device that ultimately controls the automation processes in their entirety. The ex-

amples that we have shown throughout this work instantiate the need to secure not

only the SCADA PC’s, but also the PLC’s to which these PC’s are connected.

This research proposes the development of a systematic classification of PLC soft-

ware vulnerabilities, mitigation strategies, and, ultimately, a static analysis tool which

identifies potential threats in ladder logic code and recommend corrective actions to

mitigate the threats. The intent of this research is to provide a mechanism which,

through its various components, would allow for the protection of the PLC ladder

logic code, thereby enforcing the security requirements of the SCADA system in its

entirety. The Static Analysis Tool is built around the concepts of: 1) The Vulnera-

bility Taxonomy, 2) Severity Chart and 3) Design Patterns.

Using the Vulnerability Taxonomy as a guide, each vulnerability class was mapped

using state transition diagrams. These state transition diagrams allowed for a direct

correlation between the information contained within the Vulnerability Taxonomy

and the PLC ladder logic code. The Vulnerability Taxonomy is the basis around
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which the Taxonomy Engine was created. The Taxonomy Engine takes the PLC

ladder logic code which is input into the Static Analysis Tool and determines the

existence of vulnerability based on the set of rules provided.

Once it has been determined that a vulnerability exists, the Severity Engine de-

termines the severity of the vulnerability found. For this, we developed a Severity

Chart. The severity of each vulnerability is ranked according to the extent of damage

possible if a given security breach would occur. The ranking assigned by the Severity

Chart are ’A - D’, with ’A’ being the most severe and ’D’ being less severe. The

Severity Engine is built around the severity levels found withing the severity chart.

Next, we address the need for mitigating detected vulnerabilities. The Design

Pattern Engine selects Design Patterns, i.e. proper coding methods, to mitigate

the vulnerabilities. The output provided by the Static Analysis Tool provides a

mechanism for the user to determine the existence of a security risk within their PLC

code, an understanding of the security severity level(s) involved, and a list of design

patterns that will help to alleviate those risks.

Our Vulnerability Taxonomy incorporates both safety and security vulnerabilities.

Therefore it supports both novice and experienced coders as well as defends against

malicious attackers.

Our future research addresses the following problems:

1. Automate the correction process within the Static Analysis Tool

Currently, the output of the Static Analysis Tool lists the vulnerability found,

severity of the vulnerability, the associated design pattern which could be used

to mitigate the vulnerability and sample PLC code showing the proposed cor-

rection. We envision automating this entire process such that the end user

could agree or disagree with the proposed change. If the user agrees with the

proposed change, the change would automatically modify the PLC ladder logic

in question. Figure 7.1 shows a ’mock up’ of the proposed automated process.
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Figure 7.1: Future Automated Static Analysis Tool

2. Optimized design pattern selection

Currently, the Static Analysis Tool will select each design pattern that pro-

vides a mitigation strategy to the vulnerability found. Our future research will

attempt to find the most efficient design pattern of the suggestions given.

Multiple design patterns may exist to mitigate a vulnerability. Enhanced pat-

tern selection would allow the system to select design patterns for a set of

vulnerabilities by optimizing a cost function, e.g. number of patterns or cost of

redesign of the PLC code.
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3. Experimentation

Through experimentation to be done with groups of students currently enrolled

in the Electrical Engineering Technology program at York Technical College,

we are planning to investigate the ease of use of our ladder logic Static Analysis

Tool. We plan to follow the approach presented in the technical paper from

the NIST [37]. This will allow us to determine any necessary corrections or

additions necessary prior to working with the individual product vendors to

gain access to their proprietary systems.
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